转录组
呼吸系统
基因表达
生物途径
电池类型
细胞
基因
肺
生物
基因表达谱
细胞生物学
内科学
遗传学
医学
解剖
作者
Jushan Zhang,Haoxiang Cheng,Dongbin Wang,Yujie Zhu,Chun Yang,Yuan Shen,Jing Yu,Yuanyuan Li,Shunqing Xu,Xiaolian Song,Yang Zhou,Jia Chen,Lihong Fan,Jingkun Jiang,Changhui Wang,Ke Hao
标识
DOI:10.1016/j.envpol.2021.116951
摘要
Nitrate is a major pollutant component in ambient PM2.5. It is known that chronic exposure to PM2.5 NO3− damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution. We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM2.5 NO3− exposure were characterized at bulk-tissue and single-cell resolution. PM2.5 NO3− exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m3), exposure significantly (FDR<10%) altered 95 genes’ expression. Among the genes associated with respiratory functions, a large fraction (74.6–91.7%) were significantly perturbed by PM2.5 NO3− exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM2.5 NO3− exposure. This study extended our knowledge of PM2.5 NO3− exposure’s effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM2.5 NO3− exposure and subsequent pulmonary disease risks.
科研通智能强力驱动
Strongly Powered by AbleSci AI