Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE Publishing]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Shawn发布了新的文献求助10
1秒前
早睡早起发布了新的文献求助10
1秒前
1秒前
2秒前
维拉帕米完成签到,获得积分10
3秒前
小小莫发布了新的文献求助10
3秒前
充电宝应助净净子采纳,获得10
3秒前
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
wsw111完成签到,获得积分10
3秒前
93完成签到,获得积分10
3秒前
科研通AI5应助SHENLE采纳,获得10
4秒前
4秒前
4秒前
磊大彪发布了新的文献求助10
5秒前
Leo完成签到,获得积分10
5秒前
xcz发布了新的文献求助10
5秒前
5秒前
吕玥函发布了新的文献求助10
5秒前
6秒前
6秒前
共享精神应助灵巧谷芹采纳,获得10
7秒前
冷酷尔琴发布了新的文献求助10
7秒前
丰富飞阳完成签到,获得积分10
7秒前
7秒前
8秒前
lxrong完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
菠菜蟹发布了新的文献求助10
8秒前
alexyang发布了新的文献求助10
8秒前
LIUDEHUA发布了新的文献求助10
9秒前
xiatl发布了新的文献求助20
9秒前
wangqinlei发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
李玉发布了新的文献求助10
10秒前
在水一方应助Llllll采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576564
求助须知:如何正确求助?哪些是违规求助? 3995786
关于积分的说明 12370127
捐赠科研通 3669784
什么是DOI,文献DOI怎么找? 2022420
邀请新用户注册赠送积分活动 1056472
科研通“疑难数据库(出版商)”最低求助积分说明 943675