Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秣旎完成签到,获得积分10
2秒前
FashionBoy应助hp采纳,获得10
2秒前
3秒前
蔷薇发布了新的文献求助10
3秒前
科研通AI6应助早早采纳,获得10
3秒前
3秒前
兴奋的发卡完成签到 ,获得积分10
4秒前
火苗完成签到,获得积分10
4秒前
西因发布了新的文献求助10
5秒前
6秒前
胡桃夹子发布了新的文献求助10
7秒前
7秒前
奥观海发布了新的文献求助10
9秒前
9秒前
hp完成签到,获得积分10
10秒前
赘婿应助烂漫笑晴采纳,获得10
10秒前
宋虹发布了新的文献求助10
12秒前
hp发布了新的文献求助10
13秒前
科目三应助西因采纳,获得10
14秒前
bian发布了新的文献求助10
14秒前
爱科研的小多肉完成签到,获得积分10
16秒前
17秒前
王不凡完成签到,获得积分10
17秒前
科研同路人完成签到,获得积分0
20秒前
早早发布了新的文献求助10
21秒前
bian完成签到,获得积分10
22秒前
蟹黄味完成签到 ,获得积分10
22秒前
www发布了新的文献求助10
22秒前
hjrxby完成签到,获得积分10
22秒前
豆腐干地方完成签到,获得积分10
24秒前
24秒前
Banananan发布了新的文献求助10
25秒前
26秒前
小张完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
豆豆完成签到,获得积分10
28秒前
28秒前
Akim应助喏晨采纳,获得10
28秒前
阳光的羊发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600781
求助须知:如何正确求助?哪些是违规求助? 4686312
关于积分的说明 14843144
捐赠科研通 4677855
什么是DOI,文献DOI怎么找? 2538929
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471241