Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
1秒前
bifasci完成签到,获得积分10
2秒前
snowwwwwwwwfox完成签到,获得积分10
2秒前
务实的凝天完成签到,获得积分10
2秒前
2秒前
甜美香之完成签到 ,获得积分10
3秒前
丁静完成签到 ,获得积分10
3秒前
11111m发布了新的文献求助10
4秒前
yueyueyahoo完成签到,获得积分10
4秒前
Lucas应助坚持看完采纳,获得10
5秒前
7秒前
starry完成签到,获得积分10
8秒前
赘婿应助wang采纳,获得10
10秒前
11秒前
XH完成签到,获得积分10
12秒前
只只发布了新的文献求助10
13秒前
电致阿光完成签到,获得积分10
13秒前
L21完成签到,获得积分10
13秒前
zhentg完成签到,获得积分0
13秒前
烂漫的煎饼完成签到 ,获得积分10
16秒前
Zz完成签到 ,获得积分10
16秒前
JOY完成签到 ,获得积分10
18秒前
19秒前
乐乐应助L21采纳,获得10
19秒前
浮空鱼发布了新的文献求助10
20秒前
wang发布了新的文献求助10
23秒前
小马甲应助可爱非笑采纳,获得10
24秒前
文艺的夏青完成签到,获得积分10
27秒前
27秒前
有人应助chai采纳,获得10
28秒前
情怀应助11111m采纳,获得10
28秒前
29秒前
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
Shaw应助科研通管家采纳,获得20
33秒前
33秒前
包容友儿应助科研通管家采纳,获得10
34秒前
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086063
求助须知:如何正确求助?哪些是违规求助? 2738975
关于积分的说明 7552581
捐赠科研通 2388790
什么是DOI,文献DOI怎么找? 1266693
科研通“疑难数据库(出版商)”最低求助积分说明 613547
版权声明 598591