Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stella应助Liens采纳,获得10
1秒前
1秒前
赘婿应助时尚的雨筠采纳,获得10
1秒前
arizaki7发布了新的文献求助10
1秒前
will发布了新的文献求助10
1秒前
Ricky发布了新的文献求助10
2秒前
2秒前
陈0702_完成签到,获得积分20
2秒前
ZIS发布了新的文献求助10
2秒前
果粒橙发布了新的文献求助10
2秒前
lee发布了新的文献求助10
3秒前
buno应助无悔初心采纳,获得10
4秒前
227发布了新的文献求助10
6秒前
金金发布了新的文献求助10
6秒前
bkagyin应助香香的臭宝采纳,获得10
6秒前
6秒前
6秒前
岛屿发布了新的文献求助10
7秒前
细腻梦凡完成签到,获得积分10
7秒前
7秒前
虚拟的含灵完成签到,获得积分10
8秒前
Te关注了科研通微信公众号
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ww发布了新的文献求助10
9秒前
魁梧的盼雁完成签到,获得积分10
9秒前
陈0702_发布了新的文献求助20
9秒前
10秒前
香蕉觅云应助君尧采纳,获得10
10秒前
llly完成签到,获得积分10
10秒前
Kaka发布了新的文献求助10
11秒前
11秒前
Ricky完成签到,获得积分10
11秒前
奋斗幻姬完成签到,获得积分20
11秒前
小菜发布了新的文献求助30
11秒前
李茉琳发布了新的文献求助10
11秒前
ceeray23应助俊逸的问薇采纳,获得10
12秒前
研友_VZG7GZ应助aikeyan采纳,获得10
13秒前
潇洒的白凝完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836