Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging

人工智能 深度学习 计算机科学 光声层析成像 断层摄影术 生物医学中的光声成像 机器学习 医学 迭代重建 放射科 物理 光学
作者
Anthony DiSpirito,Tri Vu,Manojit Pramanik,Junjie Yao
出处
期刊:Experimental Biology and Medicine [SAGE Publishing]
卷期号:246 (12): 1355-1367 被引量:12
标识
DOI:10.1177/15353702211000310
摘要

The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrast —that makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望舒完成签到 ,获得积分10
1秒前
Ning00000发布了新的文献求助10
1秒前
2秒前
巡风完成签到,获得积分20
2秒前
3秒前
3秒前
yuhongsun完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助150
4秒前
包容寻菡发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
太阳完成签到 ,获得积分10
5秒前
totoo2021发布了新的文献求助10
5秒前
Lucas应助baokehui采纳,获得10
5秒前
JamesPei应助还好采纳,获得30
6秒前
科研通AI6应助11采纳,获得10
6秒前
6秒前
arizaki7发布了新的文献求助10
7秒前
壮观若南发布了新的文献求助10
8秒前
tqmx发布了新的文献求助10
8秒前
chengzhiheng发布了新的文献求助10
8秒前
9秒前
初见完成签到 ,获得积分10
9秒前
平凡完成签到,获得积分10
9秒前
9秒前
传奇3应助znn123采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
筱璞羲发布了新的文献求助10
12秒前
曦曦完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
张元元发布了新的文献求助10
14秒前
totoo2021完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942890
求助须知:如何正确求助?哪些是违规求助? 4208298
关于积分的说明 13081999
捐赠科研通 3987523
什么是DOI,文献DOI怎么找? 2183163
邀请新用户注册赠送积分活动 1198757
关于科研通互助平台的介绍 1111169