Verification of a standard method based on immunoaffinity column cleanup and HPLC-FLD analysis for determination of aflatoxins in peanut kernels

黄曲霉毒素 色谱法 检出限 化学 高效液相色谱法 萃取(化学) 相对标准差 核(代数) 数学 食品科学 组合数学
作者
Ghazaleh Aliakbarzadeh,Masoumeh Mahmoudi-Meymand,Mansooreh Mazaheri
出处
期刊:Food Control [Elsevier]
卷期号:152: 109820-109820 被引量:18
标识
DOI:10.1016/j.foodcont.2023.109820
摘要

Determination of aflatoxins as a group of potent contaminations in many food products is a common analysis in food quality control laboratories. For quantification of the four most toxic aflatoxins (AFs) (i,e. AF B1, B2, G1, and G2) in food and feed, a standard method involving a liquid extraction step followed by immunoaffinity purification and high-performance liquid chromatography (HPLC) is often used. In this work, this method is verified based on the requirements of ISO/IEC 17025 for the determination of aflatoxins in peanut kernel samples. All the method figures of merit including calibration, evaluation of limit of determinations (LODs) and limit of quantifications (LOQs), accuracy, precision, and uncertainty of the method are explained in detail. The accuracy of the applied method was verified by analysis of a CRM and calculation of the recovery. The relative standard deviations of the method (n = 6) were in the range of 4.99–7.85%. The LODs and LOQs of the method were found to be 0.15 and 0.50 μg. kg−1 for AFB1 and G1 and 0.06 and 0.2 μg kg−1 for AFB2 and G2, respectively. Finally, the uncertainties in the determination of aflatoxins concentrations, at the maximum permissible levels were calculated using the GUM procedure as 0.42, 0.094, 0.42, and 0.083 μg. kg−1 for AFB1, B2, G1, and G2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzy完成签到,获得积分10
刚刚
刚刚
qp发布了新的文献求助10
1秒前
1秒前
liao完成签到,获得积分20
1秒前
yuna_yqc完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
大模型应助吉尼斯贝贝采纳,获得10
2秒前
347发布了新的文献求助20
2秒前
3秒前
alpv完成签到,获得积分10
3秒前
ef完成签到,获得积分10
3秒前
晒晒太阳发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ZLS发布了新的文献求助10
4秒前
zzbyxh发布了新的文献求助20
4秒前
CNYDNZB发布了新的文献求助10
5秒前
彭于晏应助淡然白安采纳,获得10
5秒前
冷静的冷珍完成签到,获得积分10
5秒前
甜兰儿完成签到,获得积分10
5秒前
稚生w发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
想吃螺蛳粉完成签到,获得积分10
6秒前
582697438发布了新的文献求助10
6秒前
娇气的涵柏完成签到,获得积分20
6秒前
科研发布了新的文献求助10
6秒前
yyy0202关注了科研通微信公众号
7秒前
jinxixi完成签到,获得积分10
7秒前
大模型应助缥缈的凝丹采纳,获得10
7秒前
登登灯灯发布了新的文献求助20
8秒前
微瑕发布了新的文献求助10
8秒前
老雪半糖加冰完成签到,获得积分10
8秒前
钟小熊完成签到,获得积分10
8秒前
8秒前
脑洞疼应助劣根采纳,获得10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284