A deep encoder–decoder framework for identifying distinct ligand binding pathways

自编码 配体(生物化学) 计算机科学 生物系统 计算生物学 人工智能 化学 算法 深度学习 生物 受体 生物化学
作者
Satyabrata Bandyopadhyay,Jagannath Mondal
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (19) 被引量:1
标识
DOI:10.1063/5.0145197
摘要

The pathway(s) that a ligand would adopt en route to its trajectory to the native pocket of the receptor protein act as a key determinant of its biological activity. While Molecular Dynamics (MD) simulations have emerged as the method of choice for modeling protein-ligand binding events, the high dimensional nature of the MD-derived trajectories often remains a barrier in the statistical elucidation of distinct ligand binding pathways due to the stochasticity inherent in the ligand's fluctuation in the solution and around the receptor. Here, we demonstrate that an autoencoder based deep neural network, trained using an objective input feature of a large matrix of residue-ligand distances, can efficiently produce an optimal low-dimensional latent space that stores necessary information on the ligand-binding event. In particular, for a system of L99A mutant of T4 lysozyme interacting with its native ligand, benzene, this deep encoder-decoder framework automatically identifies multiple distinct recognition pathways, without requiring user intervention. The intermediates involve the spatially discrete location of the ligand in different helices of the protein before its eventual recognition of native pose. The compressed subspace derived from the autoencoder provides a quantitatively accurate measure of the free energy and kinetics of ligand binding to the native pocket. The investigation also recommends that while a linear dimensional reduction technique, such as time-structured independent component analysis, can do a decent job of state-space decomposition in cases where the intermediates are long-lived, autoencoder is the method of choice in systems where transient, low-populated intermediates can lead to multiple ligand-binding pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助liu采纳,获得10
刚刚
刚刚
cherish完成签到,获得积分10
1秒前
1秒前
在水一方应助pincoudegushi采纳,获得10
1秒前
1秒前
刘新完成签到,获得积分10
1秒前
糟糕的铁锤应助Beton_X采纳,获得50
1秒前
1秒前
1秒前
结实的秋凌完成签到,获得积分10
2秒前
3秒前
敬老院N号应助kathy采纳,获得30
3秒前
陈住气发布了新的文献求助10
3秒前
4秒前
希望天下0贩的0应助Momo采纳,获得10
4秒前
absb发布了新的文献求助10
5秒前
Forez发布了新的文献求助10
5秒前
zhuzhu发布了新的文献求助10
5秒前
6秒前
慕青应助不安的秋白采纳,获得10
6秒前
iii发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
称心寒松发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
yehaidadao完成签到,获得积分10
7秒前
欢呼妙菱发布了新的文献求助10
9秒前
9秒前
MizzZeus完成签到,获得积分10
9秒前
9秒前
善学以致用应助up采纳,获得10
9秒前
10秒前
ll发布了新的文献求助10
10秒前
星辰大海应助蚕宝宝小子采纳,获得10
11秒前
雪白的面包完成签到 ,获得积分10
12秒前
类囊体薄膜完成签到,获得积分10
12秒前
absb完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650