A deep encoder–decoder framework for identifying distinct ligand binding pathways

自编码 配体(生物化学) 计算机科学 生物系统 计算生物学 人工智能 化学 算法 深度学习 生物 受体 生物化学
作者
Satyabrata Bandyopadhyay,Jagannath Mondal
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (19) 被引量:1
标识
DOI:10.1063/5.0145197
摘要

The pathway(s) that a ligand would adopt en route to its trajectory to the native pocket of the receptor protein act as a key determinant of its biological activity. While Molecular Dynamics (MD) simulations have emerged as the method of choice for modeling protein-ligand binding events, the high dimensional nature of the MD-derived trajectories often remains a barrier in the statistical elucidation of distinct ligand binding pathways due to the stochasticity inherent in the ligand's fluctuation in the solution and around the receptor. Here, we demonstrate that an autoencoder based deep neural network, trained using an objective input feature of a large matrix of residue-ligand distances, can efficiently produce an optimal low-dimensional latent space that stores necessary information on the ligand-binding event. In particular, for a system of L99A mutant of T4 lysozyme interacting with its native ligand, benzene, this deep encoder-decoder framework automatically identifies multiple distinct recognition pathways, without requiring user intervention. The intermediates involve the spatially discrete location of the ligand in different helices of the protein before its eventual recognition of native pose. The compressed subspace derived from the autoencoder provides a quantitatively accurate measure of the free energy and kinetics of ligand binding to the native pocket. The investigation also recommends that while a linear dimensional reduction technique, such as time-structured independent component analysis, can do a decent job of state-space decomposition in cases where the intermediates are long-lived, autoencoder is the method of choice in systems where transient, low-populated intermediates can lead to multiple ligand-binding pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh发布了新的文献求助10
刚刚
顺利琦完成签到,获得积分10
1秒前
1秒前
小欧医生完成签到,获得积分10
1秒前
小马甲应助美好斓采纳,获得10
1秒前
亚婷儿完成签到,获得积分10
1秒前
科研通AI2S应助元谷雪采纳,获得10
2秒前
2秒前
2秒前
3秒前
hj456完成签到,获得积分10
3秒前
3秒前
4秒前
Small-violet发布了新的文献求助10
4秒前
lq发布了新的文献求助10
4秒前
可爱的函函应助leo采纳,获得10
5秒前
思源应助chenshi采纳,获得10
5秒前
SunnyYim发布了新的文献求助10
5秒前
5秒前
6秒前
neiltang发布了新的文献求助10
6秒前
田様应助charlie采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
itsserene应助科研通管家采纳,获得20
8秒前
daifei完成签到,获得积分10
8秒前
ztt发布了新的文献求助10
8秒前
8秒前
Rui完成签到,获得积分10
8秒前
wanci应助九月三日采纳,获得10
8秒前
爆米花应助stel7采纳,获得10
8秒前
小王同学搞学术完成签到,获得积分20
9秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587