肌动蛋白
内科学
内分泌学
神经保护
能量稳态
骨骼肌
神经营养因子
肌萎缩
FGF21型
医学
脑源性神经营养因子
成纤维细胞生长因子
受体
作者
Heaji Lee,Sun Yeou Kim,Yunsook Lim
出处
期刊:Nutrients
[MDPI AG]
日期:2023-05-30
卷期号:15 (11): 2559-2559
摘要
Type 2 diabetes mellitus (T2DM) is related with the incidence of sarcopenia and cognitive impairment that reduces quality of life in the elderly. Recent evidence has demonstrated that sarcopenia is associated with cognitive dysfunction, and muscle-derived endocrine factors might contribute to cognitive function by the skeletal muscle-brain endocrine loop. This study investigated the beneficial effects of Annona muricata (AM, graviola) on multi-organ energy metabolism with muscle-brain connectivity via brain function-related myokines in mice. Body composition, fasting blood glucose level, insulin, HbA1c%, histopathological changes, and the protein levels of insulin-signaling, energy metabolism, neuroprotection, inflammation, and protein-degradation pathways were measured. AM extract (AME) treatment selectively enhanced insulin signaling in the skeletal muscle and hippocampus of T2DM mice. Furthermore, AME treatment effectively increased muscle-derived fibroblast growth factor 21 (FGF21), cathepsin-B (CTSB), irisin, brain-derived neurotrophic factor (BDNF), and liver-derived FGF21 that contribute to whole-body energy homeostasis. In particular, AME increased the levels of circulating myokines (FGF21, BDNF, irisin, and CTSB), and these were accordance with the hippocampal neurotrophic factors (BDNF and CTSB) in T2DM mice. In conclusion, we suggest that AME would be a potential nutraceutical for improving the energy metabolism associated with muscle-brain connectivity via brain function-related myokines in T2DM.
科研通智能强力驱动
Strongly Powered by AbleSci AI