Identification of the Geographic Origin of Peanut Kernels by Raman Spectroscopy Fingerprinting with Chemometrics

化学计量学 化学 线性判别分析 主成分分析 支持向量机 鉴定(生物学) 拉曼光谱 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 统计 数学 计算机科学 植物 生物 光学 物理
作者
Tianjia Sun,Qingli Yang,Yingquan Zhang,Boli Guo,Yichen Guo,Qi Jia,Haiyan Zhao
出处
期刊:Analytical Letters [Informa]
卷期号:57 (4): 628-639 被引量:3
标识
DOI:10.1080/00032719.2023.2220843
摘要

AbstractThis study aimed to investigate the feasibility of identifying the geographical origin of peanuts by combining Raman spectroscopy with chemometrics. A total of 161 peanut samples were collected from Jilin, Jiangsu, and Shandong provinces in China, and their Raman spectra were collected. One-way analysis of variance (ANOVA) was used to analyze the difference in characteristic Raman spectra of peanuts from these locations. Raman spectroscopy combined with principal component analysis (PCA), k-nearest neighbor (k-NN), stepwise linear discriminant analysis (SLDA), and support vector machines (SVM) were used to classify the peanuts by province and Jilin Province city. One-way ANOVA indicated that the peak intensities at 2900, 1660, 1440, 1077, and 848 cm−1 had significant differences. The peaks at 2900, 1660, 1440, 1300, and 1077 cm−1 had significant differences in the Jilin Province city. The correct identification rates were highest for k-NN. This study demonstrates the identification of the origin of peanuts by Raman spectroscopy with chemometrics and may provide technical support for the traceability of other agricultural products.Keywords: k-nearest neighbor (k-NN)peanut kernelsRaman spectroscopystepwise linear discriminant analysis (SLDA)support vector machine (SVM) Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019BC033) and Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs (No. S2021KFKT-07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sik完成签到,获得积分10
刚刚
刚刚
1秒前
江鑫楷完成签到,获得积分10
1秒前
彭于晏应助淡然羊采纳,获得10
1秒前
李某某完成签到,获得积分10
2秒前
小白发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
卷卷关注了科研通微信公众号
3秒前
zzzzzzp发布了新的文献求助10
3秒前
大Lee发布了新的文献求助10
3秒前
科研通AI6应助哇咔咔采纳,获得10
4秒前
4秒前
乃惜完成签到,获得积分10
4秒前
4秒前
煎饼完成签到,获得积分10
5秒前
xu完成签到,获得积分20
5秒前
顺顺顺应助LMXS采纳,获得10
5秒前
科研通AI6应助LMXS采纳,获得10
5秒前
5秒前
CYQ完成签到,获得积分10
7秒前
JamesPei应助小丸子采纳,获得10
7秒前
丘比特应助Ffgg采纳,获得10
7秒前
李健的粉丝团团长应助Pull采纳,获得10
7秒前
8秒前
我是老大应助叶落不凉采纳,获得10
8秒前
9秒前
9秒前
科研通AI6应助fcxzvb采纳,获得10
9秒前
深情安青应助Sesenta1采纳,获得10
9秒前
9秒前
Hello应助任某人采纳,获得10
9秒前
Wy21完成签到 ,获得积分10
10秒前
李健应助清辉月凝采纳,获得10
12秒前
13秒前
13秒前
CodeCraft应助白衣修身采纳,获得10
14秒前
减肥法发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458