Identification of the Geographic Origin of Peanut Kernels by Raman Spectroscopy Fingerprinting with Chemometrics

化学计量学 化学 线性判别分析 主成分分析 支持向量机 鉴定(生物学) 拉曼光谱 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 统计 数学 计算机科学 植物 生物 光学 物理
作者
Tianjia Sun,Qingli Yang,Yingquan Zhang,Boli Guo,Yichen Guo,Qi Jia,Haiyan Zhao
出处
期刊:Analytical Letters [Informa]
卷期号:57 (4): 628-639 被引量:3
标识
DOI:10.1080/00032719.2023.2220843
摘要

AbstractThis study aimed to investigate the feasibility of identifying the geographical origin of peanuts by combining Raman spectroscopy with chemometrics. A total of 161 peanut samples were collected from Jilin, Jiangsu, and Shandong provinces in China, and their Raman spectra were collected. One-way analysis of variance (ANOVA) was used to analyze the difference in characteristic Raman spectra of peanuts from these locations. Raman spectroscopy combined with principal component analysis (PCA), k-nearest neighbor (k-NN), stepwise linear discriminant analysis (SLDA), and support vector machines (SVM) were used to classify the peanuts by province and Jilin Province city. One-way ANOVA indicated that the peak intensities at 2900, 1660, 1440, 1077, and 848 cm−1 had significant differences. The peaks at 2900, 1660, 1440, 1300, and 1077 cm−1 had significant differences in the Jilin Province city. The correct identification rates were highest for k-NN. This study demonstrates the identification of the origin of peanuts by Raman spectroscopy with chemometrics and may provide technical support for the traceability of other agricultural products.Keywords: k-nearest neighbor (k-NN)peanut kernelsRaman spectroscopystepwise linear discriminant analysis (SLDA)support vector machine (SVM) Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019BC033) and Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs (No. S2021KFKT-07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻诗兰完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
stellc完成签到,获得积分10
1秒前
1秒前
祝你开心发布了新的文献求助10
2秒前
追寻宛海完成签到,获得积分10
3秒前
KKK发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
迷人静白完成签到,获得积分10
5秒前
5秒前
6秒前
wangye发布了新的文献求助10
6秒前
wanci应助zyyyyyyyy采纳,获得10
6秒前
6秒前
追寻宛海发布了新的文献求助15
7秒前
7秒前
复杂惜霜发布了新的文献求助10
7秒前
Jasper应助激昂的逊采纳,获得10
7秒前
黎先生发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
wanci应助务实的西牛采纳,获得10
9秒前
彭于晏应助ww采纳,获得10
9秒前
浮游应助勇yi采纳,获得10
9秒前
9秒前
怀玉发布了新的文献求助10
11秒前
科研通AI6应助SONG采纳,获得10
11秒前
科研通AI6应助是why耶采纳,获得10
11秒前
11秒前
eijgnij发布了新的文献求助10
12秒前
12秒前
思源应助光亮的友容采纳,获得10
12秒前
xingzi123完成签到 ,获得积分10
13秒前
ww完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901