Identification of the Geographic Origin of Peanut Kernels by Raman Spectroscopy Fingerprinting with Chemometrics

化学计量学 化学 线性判别分析 主成分分析 支持向量机 鉴定(生物学) 拉曼光谱 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 统计 数学 计算机科学 植物 生物 光学 物理
作者
Tianjia Sun,Qingli Yang,Yingquan Zhang,Boli Guo,Yichen Guo,Qi Jia,Haiyan Zhao
出处
期刊:Analytical Letters [Informa]
卷期号:57 (4): 628-639 被引量:3
标识
DOI:10.1080/00032719.2023.2220843
摘要

AbstractThis study aimed to investigate the feasibility of identifying the geographical origin of peanuts by combining Raman spectroscopy with chemometrics. A total of 161 peanut samples were collected from Jilin, Jiangsu, and Shandong provinces in China, and their Raman spectra were collected. One-way analysis of variance (ANOVA) was used to analyze the difference in characteristic Raman spectra of peanuts from these locations. Raman spectroscopy combined with principal component analysis (PCA), k-nearest neighbor (k-NN), stepwise linear discriminant analysis (SLDA), and support vector machines (SVM) were used to classify the peanuts by province and Jilin Province city. One-way ANOVA indicated that the peak intensities at 2900, 1660, 1440, 1077, and 848 cm−1 had significant differences. The peaks at 2900, 1660, 1440, 1300, and 1077 cm−1 had significant differences in the Jilin Province city. The correct identification rates were highest for k-NN. This study demonstrates the identification of the origin of peanuts by Raman spectroscopy with chemometrics and may provide technical support for the traceability of other agricultural products.Keywords: k-nearest neighbor (k-NN)peanut kernelsRaman spectroscopystepwise linear discriminant analysis (SLDA)support vector machine (SVM) Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019BC033) and Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs (No. S2021KFKT-07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
严天飞发布了新的文献求助10
1秒前
发10篇SCI完成签到,获得积分10
1秒前
天真的棉花糖完成签到 ,获得积分10
1秒前
ya关注了科研通微信公众号
1秒前
Min完成签到,获得积分10
2秒前
山野下发布了新的文献求助20
2秒前
Frank发布了新的文献求助10
3秒前
进击的PhD应助moon采纳,获得10
3秒前
科研通AI2S应助moon采纳,获得10
3秒前
kevin完成签到,获得积分10
4秒前
科勒基侈完成签到,获得积分10
4秒前
4秒前
5秒前
Lv发布了新的文献求助10
5秒前
6秒前
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
核动力驴应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
蓝天应助科研通管家采纳,获得30
8秒前
yznfly应助科研通管家采纳,获得150
8秒前
老福贵儿应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Luna_aaa应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643591
求助须知:如何正确求助?哪些是违规求助? 4761418
关于积分的说明 15021120
捐赠科研通 4801844
什么是DOI,文献DOI怎么找? 2567087
邀请新用户注册赠送积分活动 1524843
关于科研通互助平台的介绍 1484403