亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of the Geographic Origin of Peanut Kernels by Raman Spectroscopy Fingerprinting with Chemometrics

化学计量学 化学 线性判别分析 主成分分析 支持向量机 鉴定(生物学) 拉曼光谱 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 统计 数学 计算机科学 植物 生物 光学 物理
作者
Tianjia Sun,Qingli Yang,Yingquan Zhang,Boli Guo,Yichen Guo,Qi Jia,Haiyan Zhao
出处
期刊:Analytical Letters [Informa]
卷期号:57 (4): 628-639 被引量:3
标识
DOI:10.1080/00032719.2023.2220843
摘要

AbstractThis study aimed to investigate the feasibility of identifying the geographical origin of peanuts by combining Raman spectroscopy with chemometrics. A total of 161 peanut samples were collected from Jilin, Jiangsu, and Shandong provinces in China, and their Raman spectra were collected. One-way analysis of variance (ANOVA) was used to analyze the difference in characteristic Raman spectra of peanuts from these locations. Raman spectroscopy combined with principal component analysis (PCA), k-nearest neighbor (k-NN), stepwise linear discriminant analysis (SLDA), and support vector machines (SVM) were used to classify the peanuts by province and Jilin Province city. One-way ANOVA indicated that the peak intensities at 2900, 1660, 1440, 1077, and 848 cm−1 had significant differences. The peaks at 2900, 1660, 1440, 1300, and 1077 cm−1 had significant differences in the Jilin Province city. The correct identification rates were highest for k-NN. This study demonstrates the identification of the origin of peanuts by Raman spectroscopy with chemometrics and may provide technical support for the traceability of other agricultural products.Keywords: k-nearest neighbor (k-NN)peanut kernelsRaman spectroscopystepwise linear discriminant analysis (SLDA)support vector machine (SVM) Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThis work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019BC033) and Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs (No. S2021KFKT-07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Azlne完成签到,获得积分10
54秒前
1分钟前
zhjl发布了新的文献求助10
1分钟前
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
2分钟前
清脆语海发布了新的文献求助10
2分钟前
李爱国应助清脆语海采纳,获得10
2分钟前
2分钟前
2分钟前
MiaMia应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
3分钟前
香蕉觅云应助zl采纳,获得10
3分钟前
zym完成签到 ,获得积分10
3分钟前
3分钟前
ZYP发布了新的文献求助10
4分钟前
深情安青应助朱羊羊采纳,获得10
4分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
5分钟前
zl发布了新的文献求助10
5分钟前
hhx完成签到,获得积分20
5分钟前
zl完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
6分钟前
科研通AI6应助曦耀采纳,获得10
6分钟前
小马哥完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534