材料科学
鳍
相变材料
传热
热能储存
强化传热
潜热
同心的
热的
体积热力学
热力学
复合材料
传热系数
几何学
数学
物理
作者
Ci Ao,Suying Yan,Xiaoyan Zhao,Na Zhang,Yuting Wu
标识
DOI:10.1016/j.applthermaleng.2023.120855
摘要
The latent heat thermal energy storage device provides an alternative solution to the problem of imbalance between energy supply and demand. To enhance heat transfer, a series of latent heat thermal energy storage devices with novel concentric annular fins are proposed, as the design accelerates the melting and solidification processes of stearic acid. Based on the finite volume method, the enthalpy-porosity approach is employed to numerical simulation the charging/discharging process. Effects of the number and arrangement of concentric annular fins on the liquid fraction, melting and solidification front, melting uniformity, temperature uniformity, velocity uniformity and total melting and solidification time during melting and solidification are studied. Results showed that the melting and solidification rate increases with increasing fin number. The total melting and solidification times were reduced by 72.83% and 86.39%, respectively, for the case with 9 concentric annular fins compared to the bare tube. Both melting performance and temperature uniformity were improved. Further, the effect of fin arrangement on the melting and solidification performance was investigated with the same total volume of fins. Results revealed that the heat transfer performance of progressively shorter fin structures < uniformly distributed fins < progressively longer fins < performance of non-uniformly distributed fin arrangement. The non-uniform fin arrangement reduces the total melting and solidification time of stearic acid by 85.46% and 90.11%, respectively, compared to bare tube. This work provides new insights into the understandings of the transient phase change process and the strategies for guiding the design for thermal energy storage devices using annular fins.
科研通智能强力驱动
Strongly Powered by AbleSci AI