Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes

逻辑回归 医学 随机森林 机器学习 2型糖尿病 体质指数 人工智能 朴素贝叶斯分类器 接收机工作特性 内科学 糖尿病 回归 计算机科学 统计 数学 支持向量机 内分泌学
作者
Chung‐Ze Wu,Li-Ying Huang,Fang-Yu Chen,Chun‐Heng Kuo,Dong-Feng Yeih
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (11): 1834-1834 被引量:5
标识
DOI:10.3390/diagnostics13111834
摘要

Carotid intima-media thickness (c-IMT) is a reliable risk factor for cardiovascular disease risk in type 2 diabetes (T2D) patients. The present study aimed to compare the effectiveness of different machine learning methods and traditional multiple logistic regression in predicting c-IMT using baseline features and to establish the most significant risk factors in a T2D cohort. We followed up with 924 patients with T2D for four years, with 75% of the participants used for model development. Machine learning methods, including classification and regression tree, random forest, eXtreme gradient boosting, and Naïve Bayes classifier, were used to predict c-IMT. The results showed that all machine learning methods, except for classification and regression tree, were not inferior to multiple logistic regression in predicting c-IMT in terms of higher area under receiver operation curve. The most significant risk factors for c-IMT were age, sex, creatinine, body mass index, diastolic blood pressure, and duration of diabetes, sequentially. Conclusively, machine learning methods could improve the prediction of c-IMT in T2D patients compared to conventional logistic regression models. This could have crucial implications for the early identification and management of cardiovascular disease in T2D patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的宝马完成签到,获得积分10
刚刚
我不吃牛肉完成签到,获得积分10
1秒前
2秒前
程传勇完成签到,获得积分10
2秒前
11111111111完成签到,获得积分10
2秒前
37完成签到,获得积分10
5秒前
小夫应助百岁小咪采纳,获得10
9秒前
小帅完成签到,获得积分10
9秒前
白白发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
zq应助科研通管家采纳,获得10
11秒前
zq应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224