#3953 TOXIC MICROBIOME AND CHRONIC KIDNEY DISEASE: INSIGHTS FROM THE CKD-REIN COHORT STUDY

微生物群 肾脏疾病 医学 队列 透析 肾功能 内科学 血液透析 肠道菌群 生理学 队列研究 免疫学 生物信息学 生物
作者
Sandra Wagner,Laetitia Koppe,Manolo Laiola,Islam Amine Larabi,Florence Thirion,Denis Fouque,Emmanuelle Le Chatelier,Jean‐Claude Alvarez,Ziad A. Massy,Dusko Ehrlich,Bénédicte Stengel
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (Supplement_1)
标识
DOI:10.1093/ndt/gfad063c_3953
摘要

Abstract Background and Aims Many uremic toxins (UTs) originate from gut microbiome, and contribute to chronic kidney disease (CKD) progression and cardiovascular morbidity. In order to reduce uremic symptoms and CKD progression, patients have several dietary restrictions, which may influence gut microbiome composition, and impact UTs production. An altered microbiome may contribute to UTs increase in those patients. However, the role of key bacterial taxa in producing UTs and the impact of diet on UTs variance in non-dialyzed patients are not well known. The objectives of this study were, first, to compare microbial features between CKD patients and healthy controls, and, second, to investigate the relation of gut microbiome with uremic toxicity, as well as the potential impact of diet on such relationship. Method Characterization of gut metagenomes, 10 UTs and 3 precursors’ serum concentrations by LC-MS/MS, host characteristics and diet were obtained from 240 non-dialysis CKD patients from the CKD-REIN cohort (mean ± SD): age: 68 ± 11 years, 71% male, estimated glomerular filtration rate (eGFR): 33.2 ± 12.7 ml/min/1.73m². First, to identify microbial biomarkers characterizing the gut microbiome-related toxicity in CKD, we compared microbiome features between 78 CKD patients and 78 age-, sex-, and BMI-matched healthy controls from the Milieu Interieur (MI) cohort: age: 58 ± 10 years, 60% male, eGFR: 89 ± 13. Second, we performed a multiomics’ data integration analysis via a supervised modelling to investigate cross-sectionally the association between host characteristics, gut microbiome, UTs, and diet-related features according to CKD severity (eGFR<30, n = 110 vs eGFR ≥30 mL/min/1.73m², n = 130). Results Compared to healthy controls, CKD patients had a significant reduced gut microbiome health index. Several Metagenomic Species Pan-genomes (MSPs) were significantly contrasted between MI and CKD cohorts: 43 species were enriched in CKD patients vs 24 in controls. Species most enriched in CKD patients included several UTs producers such as Lachnospiraceae spp, Dysosmobacter – Oscillibacter spp, Butyricimonas faecihominis, Victivallis vadensis and Hungatella spp, some of which were positively correlated with the following UTs: 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), trimethylamine-N-oxide (TMAO), and indole-3-acetic acid (3-IAA). Moreover, species belonging to Enterocloster and Hungatella genera (both members of Lachnospiraceae family) were found to be negatively correlated with eGFR. Among species associated with CKD severity, species carrying genes for UTs production were observed such as Desuflovibiro fairfieldensis, Bacteroides clarus and Blautia obeum along with increasing alcohol and hot drinks consumption, CRP and several UTs (kynurenic acid, indoxyl sulfate and Phenylacetylglutamine) levels. In contrast, some taxa like Faecalibacterium prausnitzii and Dysosmobacter welbionis were associated with legume intake but not with UTs. Conclusion Our study highlights an alteration of gut microbiome in CKD patients compared to healthy controls, with increased abundance of UTs producer species. The results of the multidimensional data integration modelling suggest a strong interplay between food intake, gut microbiome modifications, UTs accumulation and clinical features. These findings might open to promising therapeutic strategies to reduce microbiome-related toxicity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助morlison采纳,获得10
刚刚
3秒前
3秒前
4秒前
5秒前
乐呀完成签到,获得积分10
5秒前
木头人呐完成签到 ,获得积分10
5秒前
小马甲应助吴岳采纳,获得10
5秒前
天天向上赶完成签到,获得积分10
5秒前
整齐的凡梦完成签到,获得积分10
6秒前
孙冉冉发布了新的文献求助10
7秒前
MHB应助towerman采纳,获得10
8秒前
Dean发布了新的文献求助10
8秒前
9秒前
加油加油发布了新的文献求助10
9秒前
lili完成签到 ,获得积分10
10秒前
文剑武书生完成签到,获得积分10
11秒前
科研通AI5应助无限鞅采纳,获得10
11秒前
11秒前
852应助木棉采纳,获得10
11秒前
12秒前
卓哥完成签到,获得积分10
13秒前
14秒前
Agan发布了新的文献求助10
14秒前
14秒前
15秒前
morlison发布了新的文献求助10
15秒前
科研通AI5应助金色年华采纳,获得10
17秒前
充电宝应助kh453采纳,获得10
17秒前
正经俠发布了新的文献求助10
17秒前
一衣发布了新的文献求助20
18秒前
可爱的函函应助药学牛马采纳,获得10
18秒前
XM发布了新的文献求助10
18秒前
专注之双完成签到,获得积分10
19秒前
SciGPT应助十一采纳,获得10
19秒前
19秒前
A1234完成签到,获得积分10
20秒前
刘铭晨发布了新的文献求助10
21秒前
孙冉冉完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808