Deep learning approach for one-hour ahead forecasting of weather data

自回归积分移动平均 平均绝对百分比误差 均方误差 风速 自适应神经模糊推理系统 统计 气象学 相关系数 环境科学 时间序列 数学 计算机科学 模糊逻辑 人工智能 模糊控制系统 地理
作者
Arif Özbek
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:45 (3): 7606-7628 被引量:4
标识
DOI:10.1080/15567036.2023.2222690
摘要

Weather is made up of multiple parameters, including solar radiation (SR), atmospheric pressure (AP), soil temperature (ST), atmospheric temperature (AT), wind speed (WS), relative humidity (RH), and sunshine duration (SD). These factors are also crucial for the renewable energy sector, solar simulation, agriculture, air pollution, water supply and distribution, avalanche warning, forestry, and town and regional planning. A deep learning method based on a neural network with Long Short-Term Memory (LSTM) was employed in this investigation for one-hour-ahead weather data forecasting. The ability of the LSTM model was compared with the Adaptive Neuro-Fuzzy Inference System (ANFIS) with that of the fuzzy c-means (FCM), Autoregressive Integrated Moving Average (ARIMA) model, and the Autoregressive Moving Average (ARMA) model. Mean absolute error (MAE), correlation coefficient (R), root means square error (RMSE), average bias, Nash – Sutcliffe efficiency coefficient (NSE), and mean absolute percentage error (MAPE) were selected as evaluation criteria. Results indicated that the proposed LSTM model presented good enough results compared to other used methods. 7 different types of meteorological data from a total of 4 years (35040 hours) were divided into 25% test data and 75% training data for the models. The best result was obtained for the hourly ST estimation of Adana province using the LSTM method, the MAE, RMSE, R, bias, NSE, and MAPE values were computed as 0.016°C, 0.078°C, 0.9999, −0.00018°C, 0.0805%, and 0.9999, respectively. On the other hand, the worst result was obtained for the hourly SD for Mardin province when ARIMA was used, and the statistical measures were derived as 0.128 hours for MAE, 0.215 hours for RMSE, 0.8851 for R, 0.00091 hours for bias, and 0.7657 for NSE. In this regard, it is demonstrated that the LSTM technique outperformed the other models in terms of all-weather data estimates and delivered highly sensitive outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
把的蛮耐得烦完成签到,获得积分10
1秒前
华仔应助机灵的幼荷采纳,获得10
2秒前
2秒前
典雅皮带应助苗条的傲丝采纳,获得10
3秒前
小双一发布了新的文献求助10
6秒前
9秒前
myy完成签到,获得积分10
11秒前
yuaner完成签到,获得积分10
11秒前
m李完成签到 ,获得积分10
13秒前
hhhblabla应助MRM采纳,获得10
13秒前
思源应助lb采纳,获得10
14秒前
15秒前
15秒前
唯美完成签到,获得积分10
15秒前
15秒前
爆米花应助bull采纳,获得10
16秒前
sxs完成签到 ,获得积分10
17秒前
ShellyMaya完成签到 ,获得积分10
17秒前
17秒前
zyj完成签到,获得积分10
18秒前
离个大谱发布了新的文献求助10
18秒前
善学以致用应助D9527采纳,获得10
19秒前
JY发布了新的文献求助10
21秒前
huan完成签到,获得积分10
21秒前
机灵的幼荷完成签到,获得积分10
22秒前
离个大谱完成签到,获得积分10
23秒前
27秒前
yuaner发布了新的文献求助10
30秒前
31秒前
32秒前
天天开心发布了新的文献求助10
34秒前
Ir应助DSUNNY采纳,获得10
34秒前
小蘑菇应助知识探索家采纳,获得10
35秒前
36秒前
佩奇666发布了新的文献求助10
36秒前
coffeecat完成签到 ,获得积分10
38秒前
贾舒涵发布了新的文献求助10
39秒前
尽快毕业完成签到 ,获得积分10
42秒前
42秒前
越旻完成签到,获得积分10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672293
求助须知:如何正确求助?哪些是违规求助? 3228627
关于积分的说明 9781377
捐赠科研通 2939114
什么是DOI,文献DOI怎么找? 1610578
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174