Accelerated discovery of magnesium intermetallic compounds with sluggish corrosion cathodic reactions through active learning and DFT calculations

材料科学 金属间化合物 吸附 腐蚀 密度泛函理论 阴极保护 电偶腐蚀 化学物理 电化学 冶金 物理化学 计算化学 化学 合金 有机化学 电极
作者
Yaowei Wang,Qingli Tang,Xinchen Xu,Paul Weng,Tiejin Ying,Yintang Yang,Xiaoqin Zeng,Hong Zhu
出处
期刊:Acta Materialia [Elsevier]
卷期号:255: 119063-119063 被引量:5
标识
DOI:10.1016/j.actamat.2023.119063
摘要

Magnesium (Mg) alloys can potentially be widely applied in transportation, aerospace and biomedical fields due to the light weight and biocompatibility. However, they are usually subjected to serious galvanic corrosions due to high chemical activity. In this work, active learning is employed to discover the intermetallic compounds which can suppress the corrosion cathodic reaction of Mg alloys. The hydrogen adsorption energy, which is a descriptor for the rate of the cathodic hydrogen evolution reaction (HER), is predicted by machine learning models using the geometric and chemical features of the H adatom's Voronoi neighbors. After five active learning iterations, the prediction error of the H adsorption energy for the strong/weak adsorption configuration is 0.196 eV (MAE) with the training set size less than 1% unknown data set. Furthermore, we find that the surfaces with strong H adsorption transfer more electrons to H adatoms than the weak H adsorption surfaces. Finally, the ability of the binary Mg intermetallics to inhibit the HER is ranked according to their surface stabilities and predicted H adsorption energies. This work suggests the binary Mg intermetallics that could greatly suppress the corrosion cathodic reaction through active learning and density functional theory (DFT) simulations, which is expected to accelerate the design of corrosion-resistant Mg alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
模糊中正应助SZHGYMC采纳,获得30
刚刚
wheattt发布了新的文献求助10
刚刚
小乙文完成签到,获得积分10
刚刚
1秒前
fei发布了新的文献求助10
1秒前
乖拉完成签到,获得积分10
2秒前
肉球完成签到,获得积分10
2秒前
3秒前
娜行发布了新的文献求助10
3秒前
俭朴的猫咪完成签到,获得积分10
4秒前
科研通AI5应助xzn1123采纳,获得10
5秒前
5秒前
安安发布了新的文献求助10
5秒前
5秒前
粉面菜蛋完成签到,获得积分10
5秒前
Majician完成签到,获得积分10
5秒前
高兴的悟空完成签到,获得积分10
6秒前
ZY发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI2S应助Dagong-xz采纳,获得10
7秒前
7秒前
星辰大海应助REN采纳,获得10
7秒前
7秒前
了了完成签到,获得积分10
9秒前
薛wen晶完成签到 ,获得积分10
9秒前
冷傲曼荷完成签到 ,获得积分10
9秒前
QQ发布了新的文献求助10
9秒前
fei完成签到,获得积分20
10秒前
10秒前
xzn1123重新开启了寻觅文献应助
11秒前
wheattt完成签到,获得积分10
11秒前
11秒前
乐悠悠完成签到 ,获得积分10
11秒前
liuzhr发布了新的文献求助10
11秒前
冰勾板勾发布了新的文献求助10
11秒前
阳光怀亦完成签到,获得积分10
12秒前
12秒前
喜宝完成签到,获得积分10
13秒前
科研通AI5应助单薄的凡灵采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931