丝胶
伤口愈合
丝绸
材料科学
白藜芦醇
伤口敷料
自愈水凝胶
生物医学工程
再生(生物学)
药理学
复合材料
细胞生物学
高分子化学
外科
医学
生物
作者
Yanwei Li,Susu Wang,Yukui Zhang,Guozheng Zhang,Tangfeng Wu,Yongkang Wei,Xinyu Cao,Hui Yan,Peisheng Liang,Zihan Yan,Yanan Guo,Yeshun Zhang
标识
DOI:10.1088/1748-605x/acd318
摘要
Abstract Wound repair is challenging for traditional wound dressings. New bioactive dressings need to be developed urgently. Herein, we reported a highly bioactive silk protein wound dressing (SPD) with natural silk fiber-sericin hydrogel interpenetrating double network structure, which combines the dual characteristics of natural silk and sericin hydrogel. Silk fiber scaffolds were secreted directly from silkworms bred by regulating their spinning behaviors. Sericin in SPD is obtained by dissolving silkworm cocoons at high temperature and high pressure, while it remains intact activities to self-assemble a hydrogel. To explore the effect of SPD, we first systematically evaluated its physicochemical properties and biological activities in vitro . The SPD exhibits high porosity, prominent mechanical strength, pH-responsive degradability, and excellent anti-oxidation and cell compatibility. Besides, SPD can load and maintain long-term drug release. Based on the satisfactory performance of SPD in vitro , effective in vivo treatment was achieved in a mouse full-thickness wound model, as demonstrated by a significantly accelerated wound healing process, promote the regeneration of hair follicles and sebaceous glands, increased expression of vascular endothelial growth factor, and reduced inflammation. Further, resveratrol was loaded into SPD to enhance the effects of anti-oxidation and anti-inflammation for wound healing. Our investigation shows that SPD with excellent physicochemical and biological properties applied in a murine full-thickness skin wound model resulted in remarkable and efficient acceleration of healing process, which may inspire the design of new, effective, and safer medical materials for tissue regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI