Competing Self‐Assembly to Access Helical Chitin Nanofibers for Advanced Chitinous Materials

甲壳素 材料科学 纳米纤维 纳米技术 自组装 高分子科学 化学工程 壳聚糖 工程类
作者
Xinghuan Lin,Yuxin Feng,Qiaoqiao Jia,Ke Jiang,Junhui Xiang,Ling Chen,Pan Chen,Anmin Zheng,Bo Duan
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202503547
摘要

Abstract Self‐assembly affords a rich design space in fabricating polymeric nanomaterials. However, the crystalline polymer often exhibits the vigorous self‐assembly process due to the extensive inter‐ and intra‐molecular interactions, leading to the challenge in controlling their self‐assembly behavior at the nanoscale. Herein, this work proposes a competing self‐assembly strategy to regulate the molecular self‐assembly tendency of chitin (a semi‐crystalline polysaccharide) for achieving the regenerated chitin nanofibers with helical structure. This approach focuses on subtly modulating the noncovalent interactions among the chitin chains through deacetylation in a homogeneous system. By fine‐tuning the degree of deacetylation (DD) to a moderate level (≈26%–37%), this work facilitates the chitin chains to compete self‐assembling into the α‐chitin and hydrated chitosan crystalline structure, which effectively mitigates the overall self‐assembly tendency of the chitin chains and ultimately restricting their aggregations to nanoscale dimensions. This fabrication concept achieves various chitin nanofibers morphology (single, randomly branched and comb‐like), all featuring a helical configuration. The chitin nanofibers are successfully processed into the nanopaper and bioink, highlighting the potential in constructing high‐performance materials. This work anticipates that the competing self‐assembly concept can be extended to other crystalline polymers with strong molecular interactions, offering a new pathway to design advanced nanomaterials for diverse applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
沉默的幻枫给沉默的幻枫的求助进行了留言
3秒前
4秒前
杨杨杨发布了新的文献求助10
6秒前
9秒前
奥特曼小曹完成签到,获得积分10
10秒前
cyc发布了新的文献求助10
10秒前
CM完成签到,获得积分10
11秒前
英姑应助悲凉的溪流采纳,获得10
12秒前
hyx完成签到,获得积分20
13秒前
可爱的函函应助dz采纳,获得10
13秒前
13秒前
15秒前
16秒前
16秒前
科研小小菜鸟完成签到,获得积分10
16秒前
18秒前
18秒前
18秒前
彩色夏波发布了新的文献求助10
21秒前
hhhblabla应助勤恳的含玉采纳,获得10
21秒前
YY发布了新的文献求助30
21秒前
cjw完成签到 ,获得积分10
22秒前
Owen应助粗心的chen采纳,获得10
23秒前
24秒前
24秒前
科研通AI5应助高兴123采纳,获得10
25秒前
LIUJC完成签到,获得积分10
28秒前
安笙发布了新的文献求助10
29秒前
坚强的访蕊完成签到,获得积分10
30秒前
执着烧鹅完成签到,获得积分10
32秒前
34秒前
38秒前
38秒前
扎根发布了新的文献求助10
39秒前
杨俊锋完成签到,获得积分20
39秒前
科研通AI5应助科研虫采纳,获得10
40秒前
快乐吗猪完成签到 ,获得积分10
41秒前
yjf完成签到,获得积分10
41秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174