生物标志物
生物标志物发现
临床试验
医学
计算机科学
蛋白质组学
肿瘤科
内科学
计算生物学
生物
基因
生物化学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Elizabeth Choe,Etai Jacob
标识
DOI:10.1016/j.ccell.2025.03.029
摘要
Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, remains challenging. To address this, we present a neural network framework based on contrastive learning-the Predictive Biomarker Modeling Framework (PBMF)-that explores potential predictive biomarkers in an automated, systematic, and unbiased manner. Applied retrospectively to real clinicogenomic datasets, particularly for immuno-oncology (IO) trials, our algorithm identifies biomarkers of IO-treated individuals who survive longer than those treated with other therapies. We demonstrate how our framework retrospectively contributes to a phase 3 clinical trial by uncovering a predictive, interpretable biomarker based solely on early study data. Patients identified with this predictive biomarker show a 15% improvement in survival risk compared to those in the original trial. The PBMF offers a general-purpose, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
科研通智能强力驱动
Strongly Powered by AbleSci AI