Leveraging Frequency Analysis for Image Denoising Network Pruning

人工智能 计算机科学 图像去噪 降噪 图像处理 模式识别(心理学) 修剪 图像(数学) 图像复原 计算机视觉 农学 生物
作者
Dongdong Ren,Wenbin Li,Jing Huo,Lei Wang,Hongbing Pan,Yang Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3544108
摘要

As a common model compression technique, network pruning is widely used to reduce storage and computational cost of deep models in the resource-constrained regime. However, most current pruning methods are designed for highlevel vision tasks, with few developed for low-level vision tasks. We observed that the norm-based pruning criterion, originally designed for high-level vision tasks, is highly unsuitable for low-level image denoising networks. This difference arises because image denoising networks pursue distinct feature granularities and goals compared to typical high-level vision tasks. To address this issue, we propose a novel filter evaluation method, termed High-Frequency Components Pruning (HFCP), specifically tailored for image denoising network pruning. HFCP assesses filter importance based on high-frequency components. To the best of our knowledge, this is the first pruning method designed specifically for image denoising tasks, straightforward and applicable to various types of noise. Furthermore, HFCP enhances the pruned model's high-frequency information content with high reliability and interpretability. This facilitates the network's ability to distinguish high-frequency signals from noise. We comprehensively analyzed multiple image denoising networks and validated HFCP's effectiveness across four mainstream networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助溜了溜了采纳,获得10
刚刚
1秒前
1秒前
1秒前
Marksman497发布了新的文献求助10
2秒前
逝水无痕发布了新的文献求助10
2秒前
跳跃人达完成签到,获得积分10
2秒前
。墨殇发布了新的文献求助10
2秒前
cf2v完成签到 ,获得积分10
4秒前
科研通AI5应助放平心态采纳,获得10
4秒前
4秒前
5秒前
领导范儿应助风城玫瑰采纳,获得10
6秒前
sunshine发布了新的文献求助10
6秒前
6秒前
orixero应助FENGHUI采纳,获得10
7秒前
7秒前
7秒前
lalala发布了新的文献求助10
7秒前
HL发布了新的文献求助10
8秒前
大力的新蕾完成签到,获得积分10
8秒前
Ricochet发布了新的文献求助20
8秒前
丘比特应助JZX采纳,获得20
9秒前
狼牧羊城完成签到,获得积分10
9秒前
10秒前
Hzz完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
欣喜绮玉发布了新的文献求助30
11秒前
Lailai发布了新的文献求助10
11秒前
小蘑菇应助冷静斌采纳,获得10
12秒前
英俊的铭应助狂野芷卉采纳,获得10
12秒前
奔奔发布了新的文献求助10
12秒前
14秒前
15秒前
大模型应助sunshine采纳,获得150
15秒前
pluto应助彪壮的可兰采纳,获得10
15秒前
SciGPT应助彪壮的可兰采纳,获得10
15秒前
SciGPT应助tsngl采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538545
求助须知:如何正确求助?哪些是违规求助? 3116302
关于积分的说明 9324585
捐赠科研通 2814070
什么是DOI,文献DOI怎么找? 1546471
邀请新用户注册赠送积分活动 720547
科研通“疑难数据库(出版商)”最低求助积分说明 712073