Drugging Disordered Proteins by Conformational Selection to Inform Therapeutic Intervention

干预(咨询) 选择(遗传算法) 计算机科学 计算生物学 数据科学 化学 生物信息学 医学 生物 人工智能 精神科
作者
Bryan A. Bogin,Zachary A. Levine
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01160
摘要

Drugging intrinsically disordered proteins (IDPs) has historically been a major challenge due to their lack of stable binding sites, conformational heterogeneity, and rapid ability to self-associate or bind nonspecific neighbors. Furthermore, it is unclear whether binders of disordered proteins (i) induce entirely new conformations or (ii) target transient prestructured conformations via stabilizing existing states. To distinguish between these two mechanisms, we utilize molecular dynamics simulations to induce structured conformations in islet amyloid polypeptide (IAPP), a disordered endocrine peptide implicated in Type II Diabetes. Using umbrella sampling, we measure conformation-specific affinities of molecules previously shown to bind IAPP to determine if they can discriminate between two distinct IAPP conformations (fixed in either α-helix or β-sheet). We show that our two-state model of IAPP faithfully predicts the experimentally observed selectivity of two classes of IAPP binders while revealing differences in their molecular binding mechanisms. Specifically, the binding preferences of foldamers designed for human IAPP were not fully accounted for by conformational selection, unlike those of β-breaking peptides designed to mimic IAPP self-assembly sequences. Furthermore, the binding of these foldamers, but not β-breaking peptides, was disrupted by changes in the rat IAPP sequence. Taken together, our data quantify the sequence and conformational specificity for IAPP binders and reveal that conformational selection sometimes overrides sequence-level specificity. This work highlights the important role of conformational selection in stabilizing IDPs, and it reveals how fixed conformations can provide a tractable target for developing disordered protein binders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的老九完成签到,获得积分10
1秒前
miro完成签到,获得积分10
2秒前
3秒前
fqy发布了新的文献求助10
3秒前
song发布了新的文献求助10
4秒前
5秒前
Grace完成签到 ,获得积分10
6秒前
7秒前
莹莹哒发布了新的文献求助10
8秒前
9秒前
CC完成签到,获得积分10
10秒前
10秒前
HHXYY完成签到 ,获得积分10
11秒前
11秒前
香查朵发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
细心妙菡发布了新的文献求助10
14秒前
16秒前
飘逸易文发布了新的文献求助10
16秒前
沉默的香氛完成签到 ,获得积分10
17秒前
257发布了新的文献求助10
18秒前
gu发布了新的文献求助10
19秒前
fxy发布了新的文献求助10
19秒前
搜集达人应助CC采纳,获得10
19秒前
20秒前
ding应助vv采纳,获得10
21秒前
Owen应助fqy采纳,获得10
21秒前
滴滴哩哩完成签到,获得积分10
24秒前
英姑应助初空月儿采纳,获得10
25秒前
科研通AI5应助我想看文章采纳,获得30
25秒前
25秒前
飘逸易文完成签到,获得积分10
26秒前
26秒前
LXY发布了新的文献求助20
27秒前
汤圆圆儿完成签到,获得积分10
27秒前
所所应助Mr.Young采纳,获得10
27秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296