Radiomics analysis of substantia nigra on multi-echo susceptibility map-weighted imaging for differentiating Parkinson’s disease from atypical parkinsonian syndromes

医学 过度拟合 黑质 帕金森病 人工智能 特征选择 模式识别(心理学) 接收机工作特性 病理 疾病 计算机科学 内科学 人工神经网络
作者
Weiling Cheng,Zeng Wei,Jiali Guo,Jiankun Dai,Fuqing Zhou,Fangjun Li,Xin Fang
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851251315707
摘要

Background While the “swallow tail” sign observed in the substantia nigra (SN) on susceptibility map-weighted imaging (SMWI) serves as an effective marker for differentiating patients with Parkinson's disease (PD) from healthy individuals, its visual assessment proves inadequate in differentiating PD from atypical Parkinson syndromes (APS). Purpose To employ radiomic features extracted from multi-echo SMWI of the SN to distinguish between PD and APS. Material and Methods SMWI data were acquired from 63 PD patients, 38 APS patients, and 89 healthy controls. The participants were randomly assigned to either training or test groups in a 7:3 proportion. Utilizing the PyRadiomics software, a set of radiomic features were extracted from SN for analysis. Features underwent standardization via the maximum-minimum method, with 166 statistically significant features identified through independent t-tests. To minimize the risk of overfitting, the least absolute shrinkage and selection operator (LASSO) algorithm was implemented to identify and select the five most significant features from the radiomic dataset. Five distinct machine-learning classifiers were developed to distinguish between PD, APS, and healthy controls. The SHapley Additive Explanations was employed to gain insights into and visualize the relative importance of each feature within these models. Results Morphological, first-order, texture, and wavelet transform features of the SN emerged as the most crucial determinants. The light gradient-boosting machine model demonstrated superior performance in distinguishing between PD, APS, and healthy controls. Conclusion Radiomic features of the SN derived from SMWI show promise in differentiating PD from APS, potentially enhancing diagnostic accuracy in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的中蓝完成签到 ,获得积分10
2秒前
聪明小丸子完成签到,获得积分10
3秒前
杪夏二八完成签到 ,获得积分10
5秒前
Ashley完成签到 ,获得积分10
5秒前
林夕完成签到 ,获得积分10
9秒前
万崽秋秋糖完成签到 ,获得积分10
10秒前
想吃芝士焗饭完成签到 ,获得积分10
10秒前
yi完成签到,获得积分10
11秒前
萝卜丁完成签到 ,获得积分0
12秒前
linwf完成签到 ,获得积分10
14秒前
方方完成签到 ,获得积分10
18秒前
嘟嘟雯完成签到 ,获得积分10
21秒前
23秒前
wxxz完成签到,获得积分10
23秒前
鲤鱼完成签到,获得积分10
24秒前
鲤鱼发布了新的文献求助10
27秒前
28秒前
yu_z完成签到 ,获得积分10
29秒前
令狐新竹完成签到 ,获得积分10
29秒前
英俊的小天鹅完成签到 ,获得积分10
30秒前
貔貅完成签到,获得积分10
30秒前
jojo665完成签到 ,获得积分10
33秒前
奔跑的蒲公英完成签到,获得积分10
35秒前
精明秋完成签到,获得积分10
41秒前
含糊的泥猴桃完成签到 ,获得积分10
41秒前
Dante格伦完成签到,获得积分10
42秒前
夏日香气完成签到 ,获得积分10
42秒前
ssnha完成签到 ,获得积分10
43秒前
Zheng完成签到 ,获得积分10
44秒前
小唐完成签到,获得积分10
44秒前
48秒前
月潮共生完成签到 ,获得积分10
50秒前
3-HP发布了新的文献求助10
53秒前
清脆靳完成签到,获得积分10
56秒前
奶糖喵完成签到 ,获得积分10
59秒前
深情安青应助3-HP采纳,获得10
59秒前
1分钟前
xwx完成签到,获得积分10
1分钟前
sun完成签到 ,获得积分10
1分钟前
ZHUTOU发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555881
求助须知:如何正确求助?哪些是违规求助? 3131483
关于积分的说明 9391179
捐赠科研通 2831164
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890