The Predictive Ability of C-Peptide in Distinguishing Type 1 Diabetes From Type 2 Diabetes: A Systematic Review and Meta-Analysis

医学 荟萃分析 检查表 系统回顾 1型糖尿病 糖尿病 2型糖尿病 梅德林 内科学 C肽 内分泌学 心理学 生物 生物化学 认知心理学
作者
Sajid Iqbal,Abdulrahim Abu Jayyab,Ayah Mohammad Alrashdi,Sílvia Reverté‐Villarroya
出处
期刊:Endocrine Practice [Elsevier]
卷期号:29 (5): 379-387 被引量:9
标识
DOI:10.1016/j.eprac.2023.01.004
摘要

This systematic review and meta-analysis aimed to investigate the predictive ability of plasma connecting peptide (C-peptide) levels in discriminating type 1 diabetes (T1D) from type 2 diabetes (T2D) and to inform evidence-based guidelines in diabetes classification.We conducted a holistic review and meta-analysis using PubMed, MEDLINE, EMBASE, and Scopus. The citations were screened from 1942 to 2021. The quality criteria and the preferred reporting items for systematic reviews and meta-analysis checklist were applied. The protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022355088).A total of 23,658 abstracts were screened and 46 full texts reviewed. Of the 46 articles screened, 12 articles were included for the meta-analysis. Included studies varied by race, age, time, and proportion of individuals. The main outcome measure in all studies was C-peptide levels. A significant association was reported between C-peptide levels and the classification and diagnosis of diabetes. Furthermore, lower concentrations and the cutoff of <0.20 nmol/L for fasting or random plasma C-peptide was indicative of T1D. In addition, this meta-analysis revealed the predictive ability of C-peptide levels in discriminating T1D from T2D. Results were consistent using both fixed- and random-effect models. The I2 value (98.8%) affirmed the variability in effect estimates was due to heterogeneity rather than sampling error among all selected studies.Plasma C-peptide levels are highly associated and predictive of the accurate classification and diagnosis of diabetes types. A plasma C-peptide cutoff of ≤0.20 mmol/L is indicative of T1D and of ≥0.30 mmol/L in the fasting or random state is indicative of T2D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoziyi666发布了新的文献求助10
1秒前
1秒前
桃子发布了新的文献求助10
2秒前
正在输入中应助eee采纳,获得20
2秒前
屁王发布了新的文献求助10
2秒前
wwwww发布了新的文献求助10
2秒前
3秒前
QLLW完成签到,获得积分10
3秒前
3秒前
风评完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
Zhong发布了新的文献求助10
4秒前
wwwstt完成签到,获得积分20
4秒前
卢浩完成签到,获得积分10
4秒前
5秒前
6秒前
wwwstt发布了新的文献求助10
6秒前
妮妮完成签到,获得积分10
6秒前
钟是一梦发布了新的文献求助10
6秒前
共享精神应助芒竹采纳,获得10
6秒前
hu970发布了新的文献求助10
7秒前
桃子完成签到,获得积分10
7秒前
科研通AI2S应助清圆527采纳,获得10
8秒前
打打应助勿庸采纳,获得10
8秒前
南佳发布了新的文献求助10
8秒前
9秒前
wbh完成签到,获得积分10
9秒前
咕咕咕发布了新的文献求助10
9秒前
9秒前
songsong完成签到,获得积分10
10秒前
10秒前
pearl关注了科研通微信公众号
10秒前
琴生完成签到,获得积分10
11秒前
11秒前
11秒前
Mtoc完成签到 ,获得积分10
11秒前
11秒前
跳跃老五完成签到 ,获得积分10
11秒前
11秒前
浪迹天涯完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740