All-organic sandwich-structured BOPP/PVDF/BOPP dielectric films with significantly improved energy density and charge–discharge efficiency

聚丙烯 聚偏氟乙烯 材料科学 电介质 单体 复合数 聚合物 甲基丙烯酸酯 甲基丙烯酸甲酯 电容器 复合材料 储能 光电子学 电压 物理 工程类 电气工程 量子力学 功率(物理)
作者
Yi Gong,Weiping Xu,Dong Chen,Yuhong Ma,Changwen Zhao,Wantai Yang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:458: 141525-141525 被引量:17
标识
DOI:10.1016/j.cej.2023.141525
摘要

Biaxially orientated polypropylene (BOPP) is widely used in film capacitors for its easy process, high breakdown strength and competitive cost. However, it is still a real challenge to further improve its energy storage density. Herein, we combined BOPP with polyvinylidene fluoride (PVDF), which has the best electroactive properties among conventional dielectric polymers, into an all-organic sandwich-structured composite to improve the energy storage performance. In the configuration, commercial BOPP films served as outer layers and the binder chlorinated polypropylene (CPP) was blended with PVDF as the middle layer to strengthen the interfacial adhesion. When PVDF and CPP were blended at a weight ratio of 1:1, an enhanced discharge energy density (Ue) of 5.07 J/cm3 was obtained, with charge–discharge efficiency (η) of 82.5 %, much higher than that of BOPP (2.71 J/cm3 with η of 87.3 %). Furthermore, CPP was grafted with four different methacrylates. With the polymer-grafted CPP in the middle layer, the Ue and η of the sandwich-structured composites were further improved. For example, with methyl methacrylate as grafting monomer, the Ue and η of the sandwich-structured film were up to 5.89 J/cm3 and 80.8 %, respectively, while with nonafluorohexyl methacrylate as grafting monomer, the corresponding value of Ue and η were 5.70 J/cm3 and 88.1 %, respectively. This work demonstrated a facile strategy to combine the advantages of BOPP and PVDF by a sandwich structure to raise the energy density significantly and keep the high efficiency simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助伶俐的血茗采纳,获得10
刚刚
2秒前
2秒前
研友_qZ6V1Z发布了新的文献求助30
2秒前
112我的发布了新的文献求助10
3秒前
turbo发布了新的文献求助10
4秒前
5秒前
彭于晏应助mmol采纳,获得10
5秒前
6秒前
肉肉发布了新的文献求助10
7秒前
土豆丝炒姜丝应助123456采纳,获得10
7秒前
b1t发布了新的文献求助10
8秒前
8秒前
fish完成签到,获得积分10
9秒前
10秒前
蜗牛完成签到 ,获得积分10
11秒前
fancccc完成签到,获得积分10
12秒前
12秒前
b1t完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
李健应助turbo采纳,获得10
14秒前
SMLW完成签到 ,获得积分10
14秒前
111发布了新的文献求助10
15秒前
贰卷发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
bisalus完成签到,获得积分10
17秒前
18秒前
十七发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
胡萝卜发布了新的文献求助10
20秒前
热心橘子发布了新的文献求助10
21秒前
思源应助卷卷采纳,获得10
21秒前
bisalus发布了新的文献求助10
22秒前
李健的小迷弟应助江峰采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133094
求助须知:如何正确求助?哪些是违规求助? 2784270
关于积分的说明 7765580
捐赠科研通 2439450
什么是DOI,文献DOI怎么找? 1296807
科研通“疑难数据库(出版商)”最低求助积分说明 624728
版权声明 600771