Construction and validation of a bladder cancer risk model based on autophagy-related genes

生物 自噬 列线图 基因 比例危险模型 生存分析 癌变 接收机工作特性 膀胱癌 单变量 癌症 肿瘤科 生物信息学 多元统计 计算生物学 遗传学 内科学 医学 计算机科学 机器学习 细胞凋亡
作者
Chong Shen,Yan Yan,Shaobo Yang,Zejin Wang,Zhouliang Wu,Zhi Li,Zhe Zhang,Yuda Lin,Peng Li,Hailong Hu
出处
期刊:Functional & Integrative Genomics [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1007/s10142-022-00957-2
摘要

Autophagy has an important association with tumorigenesis, progression, and prognosis. However, the mechanism of autophagy-regulated genes on the risk prognosis of bladder cancer (BC) patients has not been fully elucidated yet. In this study, we created a prognostic model of BC risk based on autophagy-related genes, which further illustrates the value of genes associated with autophagy in the treatment of BC. We first downloaded human autophagy-associated genes and BC datasets from Human Autophagy Database and The Cancer Genome Atlas (TCGA) database, and finally obtained differential prognosis-associated genes for autophagy by univariate regression analysis and differential analysis of cancer versus normal tissues. Subsequently, we downloaded two datasets from Gene Expression Omnibus (GEO), GSE31684 and GSE15307, to expand the total number of samples. Based on these genes, we distinguished the molecular subtypes (C1, C2) and gene classes (A, B) of BC by consistent clustering analysis. Using the genes merged from TCGA and the two GEO datasets, we conducted least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to obtain risk genes and construct autophagy-related risk prediction models. The accuracy of this risk prediction model was assessed by receiver operating characteristic (ROC) and calibration curves, and then nomograms were constructed to predict the survival of bladder cancer patients at 1, 3, and 5 years, respectively. According to the median value of the risk score, we divided BC samples into the high- and low-risk groups. Kaplan-Meier (K-M) survival analysis was performed to compare survival differences between subgroups. Then, we used single sample gene set enrichment analysis (ssGSEA) for immune cell infiltration abundance, immune checkpoint genes, immunotherapy response, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and tumor mutation burden (TMB) analysis for different subgroups. We also applied quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) techniques to verify the expression of these six genes in the model. Finally, we chose the IMvigor210 dataset for external validation. Six risk genes associated with autophagy (SPOCD1, FKBP10, NAT8B, LDLR, STMN3, and ANXA2) were finally screened by LASSO regression algorithm and multivariate Cox regression analysis. ROC and calibration curves showed that the model established was accurate and reliable. Univariate and multivariate regression analyses were used to verify that the risk model was an independent predictor. K-M survival analysis indicated that patients in the high-risk group had significantly worse overall survival than those in the low-risk group. Analysis by algorithms such as correlation analysis, gene set variation analysis (GSVA), and ssGSEA showed that differences in immune microenvironment, enrichment of multiple biologically active pathways, TMB, immune checkpoint genes, and human leukocyte antigens (HLAs) were observed in the different risk groups. Then, we constructed nomograms that predicted the 1-, 3-, and 5-year survival rates of different BC patients. In addition, we screened nine sensitive chemotherapeutic drugs using the correlation between the obtained expression status of risk genes and drug sensitivity results. Finally, the external dataset IMvigor210 verified that the model is reliable and efficient. We established an autophagy-related risk prognostic model that is accurate and reliable, which lays the foundation for future personalized treatment of bladder cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hczx发布了新的文献求助10
1秒前
ZY完成签到 ,获得积分10
2秒前
小蘑菇应助wl采纳,获得10
2秒前
bkagyin应助Anderson732采纳,获得10
2秒前
GakkiSmile发布了新的文献求助10
3秒前
3秒前
雪儿完成签到 ,获得积分10
4秒前
5秒前
Dzexin完成签到,获得积分10
5秒前
深情安青应助Su73采纳,获得10
6秒前
8秒前
mll完成签到,获得积分10
9秒前
20240901完成签到,获得积分10
11秒前
小蘑菇应助朴素蜡烛采纳,获得10
11秒前
雪儿关注了科研通微信公众号
11秒前
呵呵啊哈完成签到,获得积分10
11秒前
Teslwang完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
呵呵啊哈发布了新的文献求助10
16秒前
美好的友琴完成签到,获得积分10
17秒前
CHAYA发布了新的文献求助10
18秒前
Anderson732发布了新的文献求助10
19秒前
20秒前
SciGPT应助林鱼丸采纳,获得10
21秒前
LEOhard发布了新的文献求助10
21秒前
23秒前
研友_LOoomL发布了新的文献求助10
24秒前
乐乐应助不加糖采纳,获得10
25秒前
领导范儿应助luanzhaohui采纳,获得20
26秒前
26秒前
SciGPT应助吃吃采纳,获得10
27秒前
欢欢完成签到,获得积分10
28秒前
31秒前
CHAYA完成签到,获得积分10
31秒前
Tony发布了新的文献求助10
31秒前
32秒前
34秒前
qqa发布了新的文献求助30
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238441
求助须知:如何正确求助?哪些是违规求助? 2883823
关于积分的说明 8231778
捐赠科研通 2551777
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624631