Construction and validation of a bladder cancer risk model based on autophagy-related genes

生物 自噬 列线图 基因 比例危险模型 生存分析 癌变 接收机工作特性 膀胱癌 单变量 癌症 肿瘤科 生物信息学 多元统计 计算生物学 遗传学 内科学 医学 计算机科学 机器学习 细胞凋亡
作者
Chong Shen,Yan Yan,Shaobo Yang,Zejin Wang,Zhouliang Wu,Zhi Li,Zhe Zhang,Yuda Lin,Peng Li,Hailong Hu
出处
期刊:Functional & Integrative Genomics [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1007/s10142-022-00957-2
摘要

Autophagy has an important association with tumorigenesis, progression, and prognosis. However, the mechanism of autophagy-regulated genes on the risk prognosis of bladder cancer (BC) patients has not been fully elucidated yet. In this study, we created a prognostic model of BC risk based on autophagy-related genes, which further illustrates the value of genes associated with autophagy in the treatment of BC. We first downloaded human autophagy-associated genes and BC datasets from Human Autophagy Database and The Cancer Genome Atlas (TCGA) database, and finally obtained differential prognosis-associated genes for autophagy by univariate regression analysis and differential analysis of cancer versus normal tissues. Subsequently, we downloaded two datasets from Gene Expression Omnibus (GEO), GSE31684 and GSE15307, to expand the total number of samples. Based on these genes, we distinguished the molecular subtypes (C1, C2) and gene classes (A, B) of BC by consistent clustering analysis. Using the genes merged from TCGA and the two GEO datasets, we conducted least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to obtain risk genes and construct autophagy-related risk prediction models. The accuracy of this risk prediction model was assessed by receiver operating characteristic (ROC) and calibration curves, and then nomograms were constructed to predict the survival of bladder cancer patients at 1, 3, and 5 years, respectively. According to the median value of the risk score, we divided BC samples into the high- and low-risk groups. Kaplan-Meier (K-M) survival analysis was performed to compare survival differences between subgroups. Then, we used single sample gene set enrichment analysis (ssGSEA) for immune cell infiltration abundance, immune checkpoint genes, immunotherapy response, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and tumor mutation burden (TMB) analysis for different subgroups. We also applied quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) techniques to verify the expression of these six genes in the model. Finally, we chose the IMvigor210 dataset for external validation. Six risk genes associated with autophagy (SPOCD1, FKBP10, NAT8B, LDLR, STMN3, and ANXA2) were finally screened by LASSO regression algorithm and multivariate Cox regression analysis. ROC and calibration curves showed that the model established was accurate and reliable. Univariate and multivariate regression analyses were used to verify that the risk model was an independent predictor. K-M survival analysis indicated that patients in the high-risk group had significantly worse overall survival than those in the low-risk group. Analysis by algorithms such as correlation analysis, gene set variation analysis (GSVA), and ssGSEA showed that differences in immune microenvironment, enrichment of multiple biologically active pathways, TMB, immune checkpoint genes, and human leukocyte antigens (HLAs) were observed in the different risk groups. Then, we constructed nomograms that predicted the 1-, 3-, and 5-year survival rates of different BC patients. In addition, we screened nine sensitive chemotherapeutic drugs using the correlation between the obtained expression status of risk genes and drug sensitivity results. Finally, the external dataset IMvigor210 verified that the model is reliable and efficient. We established an autophagy-related risk prognostic model that is accurate and reliable, which lays the foundation for future personalized treatment of bladder cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
jimforu完成签到 ,获得积分10
2秒前
浅浅完成签到,获得积分10
4秒前
燮老板的账号完成签到,获得积分10
7秒前
淡淡听寒完成签到 ,获得积分10
7秒前
阿达完成签到 ,获得积分10
10秒前
zm完成签到 ,获得积分10
11秒前
西山菩提完成签到,获得积分10
13秒前
帅气的藏鸟完成签到,获得积分10
13秒前
YingSuhui完成签到 ,获得积分10
14秒前
123567完成签到 ,获得积分10
16秒前
奋斗慕凝完成签到 ,获得积分10
18秒前
小明完成签到 ,获得积分10
18秒前
殷勤的紫槐发布了新的文献求助200
19秒前
我要读博士完成签到 ,获得积分10
19秒前
儒雅龙完成签到 ,获得积分10
22秒前
八八九九九1完成签到,获得积分10
22秒前
眭超阳完成签到 ,获得积分10
28秒前
共享精神应助xiaozhao123采纳,获得10
28秒前
111完成签到,获得积分10
30秒前
111发布了新的文献求助10
34秒前
满意的念柏完成签到,获得积分10
34秒前
鱼鱼完成签到 ,获得积分10
38秒前
lucorta完成签到,获得积分10
44秒前
hhh完成签到 ,获得积分10
53秒前
mojito完成签到 ,获得积分0
55秒前
森林木完成签到,获得积分10
56秒前
sweet雪儿妞妞完成签到 ,获得积分10
58秒前
乐观谷芹完成签到,获得积分10
1分钟前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
紧张的幻桃完成签到,获得积分10
1分钟前
自信南霜完成签到,获得积分10
1分钟前
lemonkim完成签到,获得积分10
1分钟前
junjie完成签到,获得积分10
1分钟前
龙6完成签到 ,获得积分10
1分钟前
Free完成签到,获得积分10
1分钟前
搜集达人应助小鲤鱼本鱼采纳,获得10
1分钟前
文静若血完成签到,获得积分10
1分钟前
1分钟前
yaya完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559