Construction and validation of a bladder cancer risk model based on autophagy-related genes

生物 自噬 列线图 基因 比例危险模型 生存分析 癌变 接收机工作特性 膀胱癌 单变量 癌症 肿瘤科 生物信息学 多元统计 计算生物学 遗传学 内科学 医学 计算机科学 机器学习 细胞凋亡
作者
Chong Shen,Yan Yan,Shaobo Yang,Zejin Wang,Zhouliang Wu,Zhi Li,Zhe Zhang,Yuda Lin,Peng Li,Hailong Hu
出处
期刊:Functional & Integrative Genomics [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1007/s10142-022-00957-2
摘要

Autophagy has an important association with tumorigenesis, progression, and prognosis. However, the mechanism of autophagy-regulated genes on the risk prognosis of bladder cancer (BC) patients has not been fully elucidated yet. In this study, we created a prognostic model of BC risk based on autophagy-related genes, which further illustrates the value of genes associated with autophagy in the treatment of BC. We first downloaded human autophagy-associated genes and BC datasets from Human Autophagy Database and The Cancer Genome Atlas (TCGA) database, and finally obtained differential prognosis-associated genes for autophagy by univariate regression analysis and differential analysis of cancer versus normal tissues. Subsequently, we downloaded two datasets from Gene Expression Omnibus (GEO), GSE31684 and GSE15307, to expand the total number of samples. Based on these genes, we distinguished the molecular subtypes (C1, C2) and gene classes (A, B) of BC by consistent clustering analysis. Using the genes merged from TCGA and the two GEO datasets, we conducted least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to obtain risk genes and construct autophagy-related risk prediction models. The accuracy of this risk prediction model was assessed by receiver operating characteristic (ROC) and calibration curves, and then nomograms were constructed to predict the survival of bladder cancer patients at 1, 3, and 5 years, respectively. According to the median value of the risk score, we divided BC samples into the high- and low-risk groups. Kaplan-Meier (K-M) survival analysis was performed to compare survival differences between subgroups. Then, we used single sample gene set enrichment analysis (ssGSEA) for immune cell infiltration abundance, immune checkpoint genes, immunotherapy response, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and tumor mutation burden (TMB) analysis for different subgroups. We also applied quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) techniques to verify the expression of these six genes in the model. Finally, we chose the IMvigor210 dataset for external validation. Six risk genes associated with autophagy (SPOCD1, FKBP10, NAT8B, LDLR, STMN3, and ANXA2) were finally screened by LASSO regression algorithm and multivariate Cox regression analysis. ROC and calibration curves showed that the model established was accurate and reliable. Univariate and multivariate regression analyses were used to verify that the risk model was an independent predictor. K-M survival analysis indicated that patients in the high-risk group had significantly worse overall survival than those in the low-risk group. Analysis by algorithms such as correlation analysis, gene set variation analysis (GSVA), and ssGSEA showed that differences in immune microenvironment, enrichment of multiple biologically active pathways, TMB, immune checkpoint genes, and human leukocyte antigens (HLAs) were observed in the different risk groups. Then, we constructed nomograms that predicted the 1-, 3-, and 5-year survival rates of different BC patients. In addition, we screened nine sensitive chemotherapeutic drugs using the correlation between the obtained expression status of risk genes and drug sensitivity results. Finally, the external dataset IMvigor210 verified that the model is reliable and efficient. We established an autophagy-related risk prognostic model that is accurate and reliable, which lays the foundation for future personalized treatment of bladder cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水凝胶发布了新的文献求助10
刚刚
缥缈语蕊发布了新的文献求助10
刚刚
冷酷男人发布了新的文献求助10
刚刚
1秒前
2秒前
Go发布了新的文献求助10
2秒前
2秒前
4秒前
魔幻的凝荷完成签到,获得积分20
6秒前
孤独兰发布了新的文献求助50
6秒前
iris发布了新的文献求助10
6秒前
7秒前
yyyg完成签到,获得积分10
7秒前
脑洞疼应助小y要读书采纳,获得10
7秒前
Ehassup完成签到,获得积分10
7秒前
惕守完成签到,获得积分10
7秒前
Pupil发布了新的文献求助10
8秒前
8秒前
Lucas应助乐观的颦采纳,获得10
8秒前
shlin完成签到,获得积分10
9秒前
王焕玉完成签到,获得积分10
10秒前
求助人员发布了新的文献求助10
10秒前
Yan完成签到,获得积分10
11秒前
11秒前
手抖的粉恐龙完成签到,获得积分10
12秒前
wzj发布了新的文献求助10
12秒前
科研发布了新的文献求助10
13秒前
13秒前
13秒前
飘逸问萍完成签到 ,获得积分10
13秒前
Jerry完成签到,获得积分10
14秒前
15秒前
Owen应助专注醉蓝采纳,获得10
16秒前
棒棒羊完成签到,获得积分10
17秒前
wuxunxun2015发布了新的文献求助30
17秒前
沿途有你完成签到 ,获得积分10
17秒前
科研通AI2S应助Ai_niyou采纳,获得10
17秒前
首页完成签到 ,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604322
求助须知:如何正确求助?哪些是违规求助? 4689080
关于积分的说明 14857878
捐赠科研通 4697618
什么是DOI,文献DOI怎么找? 2541249
邀请新用户注册赠送积分活动 1507374
关于科研通互助平台的介绍 1471874