A Comparative Study for Deep-Learning-Based Methods for Automated Reservoir Simulation

计算机科学 工作流程 深度学习 储层模拟 人工智能 人工神经网络 机器学习 卷积神经网络 代理(统计) 加速 油藏计算 数据挖掘 循环神经网络 工程类 石油工程 数据库 操作系统
作者
Alaa Maarouf,Sofiane Tahir,Shi Su,Chakib Kada Kloucha,Hussein Mustapha
出处
期刊:SPE Reservoir Characterisation and Simulation Conference and Exhibition 被引量:2
标识
DOI:10.2118/212594-ms
摘要

Abstract Reservoir simulation is essential for various reservoir engineering processes such as history matching and field development plan optimization but is typically an intensive and time-consuming process. The aim of this study is to compare various deep-learning algorithms for constructing a machine-learning (ML) proxy model, which reproduces the behavior of a reservoir simulator and results in significant speedup compared to running the numerical simulator. Initially, we generate an ensemble of realizations via the reservoir simulator to train the different ML algorithms. The data set consists of a comprehensive set of uncertainty parameters and the corresponding simulation data across all wells. The system utilizes recent advances in deep learning based on deep neural networks, convolutional neural networks, and autoencoders to create machine-learning-based proxy models that predict production and injection profiles as well as the bottomhole pressure of all wells. Thus, the proposed workflows replace the time-consuming simulation process with fast and efficient proxy models. In this work we provide a comparative study of various ML-based algorithms utilizing deep neural networks and convolutional neural networks for constructing a surrogate reservoir model. The trained models can simulate the behavior of the physics-based reservoir simulator by correlating uncertainty parameters to various history-matched reservoir properties. The algorithms were tested on a mature oilfield with a notable number of wells and several decades of production and injection data. We analyze the performance of each ML approach and provide recommendations on the optimal one. The best performing workflow for building the ML proxy model consists of two steps. The first step uses stacked autoencoders to learn a low-dimensional latent space representation of the highly dimensional simulation data. This step allows to reduce the complexity of predicting the simulation data and enhances the prediction quality. The following step constructs an ML model to predict the latent space features from input uncertainty parameters and produces highly accurate results. Reservoir simulation is of paramount importance for various reservoir engineering workflows. Traditional approaches require running physics-based simulators for multiple iterations, which results in time-consuming and labor-intensive processes. We implement and compare several deep-learning-based methods to construct ML proxy models that automate and remarkably reduce the runtime of the reservoir simulation process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助慧慧采纳,获得10
刚刚
刚刚
1秒前
1秒前
852应助孝艺采纳,获得10
2秒前
Hellowa发布了新的文献求助10
2秒前
SciGPT应助汤泽琪采纳,获得10
3秒前
4秒前
tao_blue发布了新的文献求助10
4秒前
Sckke完成签到,获得积分10
5秒前
小李是个小可爱完成签到 ,获得积分10
5秒前
乐乐应助Superman采纳,获得10
6秒前
6秒前
李健应助金刚呆门采纳,获得10
8秒前
科目三应助Sckke采纳,获得10
9秒前
10秒前
某宁完成签到,获得积分10
10秒前
君君发布了新的文献求助10
11秒前
11秒前
Akim应助樂酉采纳,获得10
11秒前
Tunny完成签到,获得积分10
12秒前
追逐者发布了新的文献求助30
12秒前
隐形曼青应助呆萌的清炎采纳,获得10
13秒前
科研通AI5应助彭于晏采纳,获得30
14秒前
15秒前
15秒前
234124发布了新的文献求助10
15秒前
萱萱发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
小羊完成签到,获得积分10
17秒前
老王完成签到,获得积分10
18秒前
18秒前
yy发布了新的文献求助10
19秒前
小栗子最爱吃糖完成签到,获得积分10
19秒前
菇菇完成签到,获得积分10
19秒前
20秒前
20秒前
我是老大应助嘻嘻采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693361
求助须知:如何正确求助?哪些是违规求助? 3244057
关于积分的说明 9845755
捐赠科研通 2956054
什么是DOI,文献DOI怎么找? 1620742
邀请新用户注册赠送积分活动 766727
科研通“疑难数据库(出版商)”最低求助积分说明 740517