How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning

中国 碳纤维 温室气体 经济 环境科学 山脊 水准点(测量) 自然资源经济学 数学 地理 生态学 算法 复合数 地图学 考古 大地测量学 生物
作者
Changfeng Shi,Jiaqi Zhi,Xiao Yao,Hong Zhang,Yue Yu,Qingshun Zeng,Luji Li,Yuxi Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:269: 126776-126776 被引量:54
标识
DOI:10.1016/j.energy.2023.126776
摘要

This paper studied the carbon peak through the cross-analysis of low-carbon economics and deep learning. The STIRPAT model and ridge regression was used to distinguish and rank the importance of influencing factors to carbon emissions. In addition, an innovative GA-LSTM model was constructed for prediction. It combined the scenario analysis to explore the path of China's low-carbon development. The results showed that China's carbon emissions have been showing a growing trend, and among the many influencing factors, only the technological level had an inhibitory effect on carbon emissions. China's carbon peak will be reached around 2030 under all three scenarios of benchmark, steady growth, and green development, with peak values of 11.82, 11.94, and 11.64 billion tons, respectively. Meanwhile, there was a big difference in the rate of change in China's carbon emissions before and after the carbon peak. The rising-rate was faster before the carbon emission peak, while the decline rate was slower after the peak. This paper argued that China should start from the energy consumption structure and industrial structure to promote the development of emission reduction work and, at the same time, vigorously promote the effect of the technological level of emission reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqwang发布了新的文献求助10
刚刚
刚刚
Jinnnnn完成签到,获得积分10
刚刚
研友_VZG7GZ应助不安的秋白采纳,获得10
刚刚
酷酷妙梦完成签到,获得积分10
刚刚
谨慎的幻悲完成签到,获得积分10
刚刚
1秒前
落月铭发布了新的文献求助10
1秒前
wyq完成签到,获得积分10
1秒前
蕲艾比比谁完成签到,获得积分10
1秒前
SciGPT应助nelson采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
MING应助科研通管家采纳,获得10
2秒前
刘源完成签到,获得积分20
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
英俊的铭应助曾经的伯云采纳,获得10
2秒前
19205100313应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
鬼笔环肽应助科研通管家采纳,获得10
3秒前
tangtang发布了新的文献求助20
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得150
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
董阳完成签到,获得积分10
3秒前
董春伟应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得50
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902185
求助须知:如何正确求助?哪些是违规求助? 4181228
关于积分的说明 12980171
捐赠科研通 3946514
什么是DOI,文献DOI怎么找? 2164652
邀请新用户注册赠送积分活动 1182883
关于科研通互助平台的介绍 1089373