材料科学
掺杂剂
荧光粉
发光
化学计量学
激活剂(遗传学)
兴奋剂
陶瓷
离子
镧系元素
持续发光
分析化学(期刊)
光电子学
物理化学
冶金
生物化学
化学
物理
量子力学
色谱法
基因
热释光
作者
Weiwei Cao,Ana Isabel Becerro,Victor Castaing,Xue Fang,Pierre Florian,Franck Fayon,Didier Zanghi,Emmanuel Véron,Alessio Zandonà,Cécile Genevois,Michael J. Pitcher,Mathieu Allix
标识
DOI:10.1002/adfm.202213418
摘要
Abstract Y 3 Al 5 O 12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO 8 or AlO 6 /AlO 4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y 3+x Al 5‐x O 12 ( x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y 3+x Al 5‐x O 12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO 6 sublattice substituted by Y 3+ , synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb 3+ /Er 3+ ‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce 3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd 3.2 Al 4.8 O 12 and Gd 3.2 Ga 4.8 O 12 . This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI