Bi-Level Implicit Semantic Data Augmentation for Vehicle Re-Identification

计算机科学 稳健性(进化) 判别式 人工智能 观点 利用 机器学习 特征提取 分割 数据挖掘 模式识别(心理学) 艺术 生物化学 化学 计算机安全 视觉艺术 基因
作者
Wei Li,Haiyun Guo,Honghui Dong,Ming Tang,Yue Zhou,Jinqiao Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4364-4376 被引量:4
标识
DOI:10.1109/tits.2023.3234644
摘要

Vehicle re-identification (Re-ID) aims at finding the target vehicle identity from multi-camera surveillance videos, which plays an important role in the intelligent transportation system (ITS). It suffers from the subtle discrepancy among vehicles from the same vehicle model and large variation across different viewpoints of the same vehicle. To enhance the robustness of Re-ID models, many methods exploit additional detection or segmentation models to extract discriminative local features. Some others employ data-driven methods to enrich the diversity of the training data, such as the data augmentation and 3D-based data generation, so that the Re-ID model can obtain stronger robustness against intra-class variations. However, these methods either rely on extra annotations or greatly increase the computational cost. In this paper, we propose the Bi-level Implicit semantic Data Augmentation (BIDA) framework to solve this problem from two aspects. (1) We implicitly augment the images semantically in the feature space according to the identity-level and superclass-level intra-class variations, which can generate more diverse semantic augmentations beyond the intra-identity variations. (2) We introduce the similarity ranking constraints on the augmented training set by extending the sample-wise triplet loss to the distribution-wise one, which can effectively reduce meaningless semantic transformations and improve the discrimination of the feature. We conduct extensive experiments on VeRi-776, VehicleID and Cityflow benchmarks to reveal the effectiveness of our method. And we achieve new state-of-the-art performance on VeRi-776.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2010完成签到,获得积分10
刚刚
南桥发布了新的文献求助10
1秒前
1秒前
研友_841KWL完成签到,获得积分10
1秒前
cy完成签到,获得积分10
1秒前
yuanbai应助欢喜蛋挞采纳,获得30
1秒前
朱信姿发布了新的文献求助10
3秒前
NexusExplorer应助yutian采纳,获得10
3秒前
ding应助小太阳采纳,获得10
4秒前
想个昵称怪费劲完成签到,获得积分10
4秒前
UUU完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
hyman1218完成签到,获得积分10
6秒前
rrrrrr发布了新的文献求助10
6秒前
7秒前
雪兔妹妹完成签到,获得积分10
8秒前
mailure完成签到,获得积分10
8秒前
华仔应助完美的皮卡丘采纳,获得10
8秒前
小蘑菇应助王富贵采纳,获得10
10秒前
10秒前
小彻完成签到,获得积分10
10秒前
10秒前
夏天搞科研完成签到,获得积分20
10秒前
xrjyjp完成签到,获得积分10
12秒前
Ming发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
13秒前
zty完成签到 ,获得积分10
13秒前
14秒前
深情安青应助ymr采纳,获得10
15秒前
地西泮完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
科研蜗牛完成签到,获得积分10
16秒前
笑点低的凉面完成签到,获得积分10
16秒前
16秒前
Ivy完成签到,获得积分10
18秒前
wwz关闭了wwz文献求助
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515