清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bi-Level Implicit Semantic Data Augmentation for Vehicle Re-Identification

计算机科学 稳健性(进化) 判别式 人工智能 观点 利用 机器学习 特征提取 分割 数据挖掘 模式识别(心理学) 艺术 生物化学 化学 计算机安全 视觉艺术 基因
作者
Wei Li,Haiyun Guo,Honghui Dong,Ming Tang,Yue Zhou,Jinqiao Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4364-4376 被引量:4
标识
DOI:10.1109/tits.2023.3234644
摘要

Vehicle re-identification (Re-ID) aims at finding the target vehicle identity from multi-camera surveillance videos, which plays an important role in the intelligent transportation system (ITS). It suffers from the subtle discrepancy among vehicles from the same vehicle model and large variation across different viewpoints of the same vehicle. To enhance the robustness of Re-ID models, many methods exploit additional detection or segmentation models to extract discriminative local features. Some others employ data-driven methods to enrich the diversity of the training data, such as the data augmentation and 3D-based data generation, so that the Re-ID model can obtain stronger robustness against intra-class variations. However, these methods either rely on extra annotations or greatly increase the computational cost. In this paper, we propose the Bi-level Implicit semantic Data Augmentation (BIDA) framework to solve this problem from two aspects. (1) We implicitly augment the images semantically in the feature space according to the identity-level and superclass-level intra-class variations, which can generate more diverse semantic augmentations beyond the intra-identity variations. (2) We introduce the similarity ranking constraints on the augmented training set by extending the sample-wise triplet loss to the distribution-wise one, which can effectively reduce meaningless semantic transformations and improve the discrimination of the feature. We conduct extensive experiments on VeRi-776, VehicleID and Cityflow benchmarks to reveal the effectiveness of our method. And we achieve new state-of-the-art performance on VeRi-776.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
元宝麻麻发布了新的文献求助10
21秒前
SciGPT应助科研通管家采纳,获得10
22秒前
默默问芙完成签到,获得积分10
24秒前
俊逸的盛男完成签到 ,获得积分10
34秒前
SciGPT应助元宝麻麻采纳,获得10
44秒前
1分钟前
活力的妙之完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
共享精神应助尊敬的凌晴采纳,获得10
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
Upupgrowth完成签到 ,获得积分10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
1分钟前
Weilu完成签到 ,获得积分10
1分钟前
1分钟前
naki完成签到,获得积分10
2分钟前
HCCha完成签到,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
元宝麻麻完成签到,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
今我来思完成签到 ,获得积分10
3分钟前
小蘑菇应助neptuniar采纳,获得10
3分钟前
甜美的觅荷完成签到,获得积分10
3分钟前
尊敬的凌晴完成签到 ,获得积分10
3分钟前
3分钟前
愤怒的念蕾完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
3分钟前
自由的雅旋完成签到 ,获得积分10
3分钟前
练得身形似鹤形完成签到 ,获得积分10
3分钟前
悠树里完成签到,获得积分10
4分钟前
gwbk完成签到,获得积分10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
neptuniar发布了新的文献求助10
4分钟前
雪花完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299