清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bi-Level Implicit Semantic Data Augmentation for Vehicle Re-Identification

计算机科学 稳健性(进化) 判别式 人工智能 观点 利用 机器学习 特征提取 分割 数据挖掘 模式识别(心理学) 艺术 生物化学 化学 计算机安全 视觉艺术 基因
作者
Wei Li,Haiyun Guo,Honghui Dong,Ming Tang,Yue Zhou,Jinqiao Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4364-4376 被引量:4
标识
DOI:10.1109/tits.2023.3234644
摘要

Vehicle re-identification (Re-ID) aims at finding the target vehicle identity from multi-camera surveillance videos, which plays an important role in the intelligent transportation system (ITS). It suffers from the subtle discrepancy among vehicles from the same vehicle model and large variation across different viewpoints of the same vehicle. To enhance the robustness of Re-ID models, many methods exploit additional detection or segmentation models to extract discriminative local features. Some others employ data-driven methods to enrich the diversity of the training data, such as the data augmentation and 3D-based data generation, so that the Re-ID model can obtain stronger robustness against intra-class variations. However, these methods either rely on extra annotations or greatly increase the computational cost. In this paper, we propose the Bi-level Implicit semantic Data Augmentation (BIDA) framework to solve this problem from two aspects. (1) We implicitly augment the images semantically in the feature space according to the identity-level and superclass-level intra-class variations, which can generate more diverse semantic augmentations beyond the intra-identity variations. (2) We introduce the similarity ranking constraints on the augmented training set by extending the sample-wise triplet loss to the distribution-wise one, which can effectively reduce meaningless semantic transformations and improve the discrimination of the feature. We conduct extensive experiments on VeRi-776, VehicleID and Cityflow benchmarks to reveal the effectiveness of our method. And we achieve new state-of-the-art performance on VeRi-776.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的翅膀完成签到,获得积分10
4秒前
喜悦的唇彩完成签到,获得积分10
9秒前
冷静的尔竹完成签到,获得积分10
17秒前
muriel完成签到,获得积分0
24秒前
creep2020完成签到,获得积分10
24秒前
XueXiTong完成签到,获得积分10
40秒前
44秒前
默默完成签到 ,获得积分10
59秒前
yl完成签到 ,获得积分10
1分钟前
tttt完成签到 ,获得积分10
1分钟前
小药丸完成签到 ,获得积分10
1分钟前
xiaolin完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
吱吱发布了新的文献求助10
2分钟前
吱吱完成签到,获得积分10
2分钟前
细心的如天完成签到 ,获得积分10
2分钟前
lyj完成签到 ,获得积分0
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Ricardo完成签到 ,获得积分10
2分钟前
坚定的小蘑菇完成签到 ,获得积分10
2分钟前
害羞便当完成签到 ,获得积分10
2分钟前
健康的魔镜完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
春风沂水发布了新的文献求助10
4分钟前
春风沂水完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
活力的珊完成签到 ,获得积分10
4分钟前
4分钟前
yhw发布了新的文献求助10
5分钟前
芽衣完成签到 ,获得积分10
5分钟前
Dryang完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651171
求助须知:如何正确求助?哪些是违规求助? 4783722
关于积分的说明 15053252
捐赠科研通 4809900
什么是DOI,文献DOI怎么找? 2572756
邀请新用户注册赠送积分活动 1528714
关于科研通互助平台的介绍 1487703