A social theory-enhanced graph representation learning framework for multitask prediction of drug–drug interactions

药物数据库 计算机科学 多任务学习 杠杆(统计) 图形 人工智能 机器学习 特征学习 注意力网络 任务(项目管理) 理论计算机科学 药品 药理学 医学 经济 管理
作者
Jian Feng,Shao‐Wu Zhang,Yi-Yang Feng,Qingqing Zhang,Minghui Shi,Jian‐Yu Shi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:8
标识
DOI:10.1093/bib/bbac602
摘要

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子发布了新的文献求助10
刚刚
刚刚
NiLou完成签到,获得积分10
刚刚
沉静的颦发布了新的文献求助10
1秒前
1秒前
yier完成签到,获得积分10
3秒前
3秒前
凉茗余香完成签到 ,获得积分10
4秒前
蜡笔小猪发布了新的文献求助10
4秒前
超级蘑菇关注了科研通微信公众号
4秒前
滴滴完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
执着的怜寒完成签到,获得积分10
6秒前
伍六七完成签到 ,获得积分10
6秒前
诸觅双完成签到 ,获得积分10
6秒前
无花果应助wbgwudi采纳,获得30
8秒前
zhangyuheng完成签到,获得积分10
8秒前
安静的安寒完成签到,获得积分10
8秒前
跳跃聪健完成签到,获得积分10
9秒前
Negan完成签到,获得积分10
9秒前
9秒前
a1oft完成签到,获得积分10
10秒前
细腻沅发布了新的文献求助10
10秒前
李爱国应助温柔的十三采纳,获得10
10秒前
10秒前
橘子海完成签到 ,获得积分10
10秒前
整齐尔蝶完成签到,获得积分10
12秒前
12秒前
笛子完成签到,获得积分10
12秒前
通~发布了新的文献求助10
12秒前
12秒前
12秒前
梁小鑫完成签到,获得积分10
12秒前
东郭诗双完成签到,获得积分20
13秒前
小老虎的妈妈完成签到 ,获得积分10
13秒前
彭于彦祖发布了新的文献求助20
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740