An Improved YOLOv5 Model for Concrete Bubble Detection Based on Area K-Means and ECANet

气泡 材料科学 机械 物理
作者
Wei Tian,Bazhou Li,Jingjing Cao,Feichao Di,Yang Li,Бо Лю
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (17): 2777-2777
标识
DOI:10.3390/math12172777
摘要

The appearance quality of fair-faced concrete plays a crucial role in evaluating the engineering quality, as the abundance of small-area bubbles generated during construction diminishes the surface quality of concrete. However, existing methods are plagued by sluggish detection speed and inadequate accuracy. Therefore, this paper proposes an improved method based on YOLOv5 to rapidly and accurately detect small bubble defects on the surface of fair-faced concrete. Firstly, to address the issue of YOLOv5 in generating prior boxes for imbalanced samples, we divide the image preprocessing part into small-, medium-, and large-area intervals corresponding to the number of heads. Additionally, we propose an area-based k-means clustering approach specifically tailored for the anchor boxes within each of these intervals. Moreover, we adjust the number of prior boxes generated by k-means clustering according to the training loss function to adapt to bubbles of different sizes. Then, we introduce the ECA (Efficient Channel Attention) mechanism into the neck part of the model to effectively capture inter-channel interactions and enhance feature representation. Subsequently, we incorporate feature concatenation in the neck part to facilitate the fusion of low-level and high-level features, thereby improving the accuracy and generalization ability of the network. Finally, we construct our own dataset containing 980 images of two classes: cement and bubbles. Comparative experiments are conducted on our dataset using YOLOv5s, YOLOv6s, YOLOxs, and our method. Experimental results demonstrate that the proposed method achieves the highest detection accuracy in terms of mAP0.5, mAP0.75, and mAP0.5:0.95. Compared to YOLOv5s, our method achieves a 7.1% improvement in mAP0.5, a 3.7% improvement in mAP0.75, and a 4.5% improvement in mAP0.5:0.95.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六步郎完成签到,获得积分10
1秒前
wzgkeyantong完成签到,获得积分10
1秒前
yun完成签到,获得积分10
1秒前
2秒前
zcg完成签到,获得积分10
3秒前
于芋菊完成签到,获得积分10
3秒前
demoestar完成签到 ,获得积分10
4秒前
摸鱼学原理完成签到 ,获得积分10
4秒前
小混分怪完成签到 ,获得积分10
6秒前
毛毛完成签到,获得积分10
7秒前
夏秋完成签到 ,获得积分10
8秒前
公西翠萱发布了新的文献求助10
9秒前
橙子完成签到 ,获得积分10
10秒前
11秒前
满意白卉完成签到 ,获得积分10
12秒前
Hanguo完成签到,获得积分20
12秒前
LM完成签到,获得积分10
14秒前
was_3完成签到,获得积分10
14秒前
科研通AI2S应助腼腆的无颜采纳,获得10
15秒前
公西翠萱完成签到,获得积分10
15秒前
微微发布了新的文献求助10
15秒前
开心向真完成签到,获得积分10
19秒前
嘻嘻完成签到 ,获得积分10
20秒前
qiancib202完成签到,获得积分10
20秒前
文泽完成签到 ,获得积分10
21秒前
尼克拉倒完成签到,获得积分10
21秒前
zhuxd完成签到,获得积分10
22秒前
Yuksn完成签到,获得积分10
22秒前
25秒前
cq_2完成签到,获得积分10
26秒前
王一刀完成签到,获得积分10
26秒前
北北完成签到 ,获得积分10
28秒前
圆圆完成签到,获得积分10
28秒前
思源应助微微采纳,获得10
28秒前
LYZSh完成签到,获得积分10
28秒前
开心的大娘完成签到,获得积分10
29秒前
30秒前
李博士发布了新的文献求助80
30秒前
woods完成签到,获得积分10
30秒前
MADAO完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565