An Improved YOLOv5 Model for Concrete Bubble Detection Based on Area K-Means and ECANet

气泡 材料科学 机械 物理
作者
Wei Tian,Bazhou Li,Jingjing Cao,Feichao Di,Yang Li,Бо Лю
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (17): 2777-2777
标识
DOI:10.3390/math12172777
摘要

The appearance quality of fair-faced concrete plays a crucial role in evaluating the engineering quality, as the abundance of small-area bubbles generated during construction diminishes the surface quality of concrete. However, existing methods are plagued by sluggish detection speed and inadequate accuracy. Therefore, this paper proposes an improved method based on YOLOv5 to rapidly and accurately detect small bubble defects on the surface of fair-faced concrete. Firstly, to address the issue of YOLOv5 in generating prior boxes for imbalanced samples, we divide the image preprocessing part into small-, medium-, and large-area intervals corresponding to the number of heads. Additionally, we propose an area-based k-means clustering approach specifically tailored for the anchor boxes within each of these intervals. Moreover, we adjust the number of prior boxes generated by k-means clustering according to the training loss function to adapt to bubbles of different sizes. Then, we introduce the ECA (Efficient Channel Attention) mechanism into the neck part of the model to effectively capture inter-channel interactions and enhance feature representation. Subsequently, we incorporate feature concatenation in the neck part to facilitate the fusion of low-level and high-level features, thereby improving the accuracy and generalization ability of the network. Finally, we construct our own dataset containing 980 images of two classes: cement and bubbles. Comparative experiments are conducted on our dataset using YOLOv5s, YOLOv6s, YOLOxs, and our method. Experimental results demonstrate that the proposed method achieves the highest detection accuracy in terms of mAP0.5, mAP0.75, and mAP0.5:0.95. Compared to YOLOv5s, our method achieves a 7.1% improvement in mAP0.5, a 3.7% improvement in mAP0.75, and a 4.5% improvement in mAP0.5:0.95.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TheTOPTOP完成签到,获得积分10
刚刚
乐乐应助HLL采纳,获得10
刚刚
华仔应助11111采纳,获得10
1秒前
1秒前
顾矜应助小诗采纳,获得10
1秒前
1秒前
123发布了新的文献求助10
2秒前
Zengyuan完成签到,获得积分10
2秒前
2秒前
闫素肃发布了新的文献求助10
2秒前
yh发布了新的文献求助10
2秒前
Jared应助邹帅采纳,获得10
2秒前
科研通AI6应助发嗲的芷采纳,获得10
3秒前
在水一方应助俏皮的冬云采纳,获得20
3秒前
zzz完成签到,获得积分10
3秒前
李健应助叶远望采纳,获得10
4秒前
4秒前
4秒前
超级幼旋应助超级向薇采纳,获得10
4秒前
姚盈盈发布了新的文献求助10
5秒前
Li2862完成签到,获得积分10
5秒前
Raul完成签到,获得积分10
5秒前
6秒前
思源应助wnan_07采纳,获得10
6秒前
汤飞柏发布了新的文献求助10
6秒前
星星发布了新的文献求助20
6秒前
科研通AI6应助怡然的蚂蚁采纳,获得30
6秒前
科研通AI6应助有点小卑鄙采纳,获得10
6秒前
sinlar发布了新的文献求助10
6秒前
某某某发布了新的文献求助10
7秒前
xin6688发布了新的文献求助10
7秒前
7秒前
7秒前
NexusExplorer应助dewo采纳,获得10
7秒前
七七完成签到 ,获得积分10
7秒前
今后应助yh采纳,获得10
8秒前
8秒前
8秒前
十一完成签到,获得积分10
9秒前
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736