An Improved YOLOv5 Model for Concrete Bubble Detection Based on Area K-Means and ECANet

气泡 材料科学 机械 物理
作者
Wei Tian,Bazhou Li,Jingjing Cao,Feichao Di,Yang Li,Бо Лю
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (17): 2777-2777
标识
DOI:10.3390/math12172777
摘要

The appearance quality of fair-faced concrete plays a crucial role in evaluating the engineering quality, as the abundance of small-area bubbles generated during construction diminishes the surface quality of concrete. However, existing methods are plagued by sluggish detection speed and inadequate accuracy. Therefore, this paper proposes an improved method based on YOLOv5 to rapidly and accurately detect small bubble defects on the surface of fair-faced concrete. Firstly, to address the issue of YOLOv5 in generating prior boxes for imbalanced samples, we divide the image preprocessing part into small-, medium-, and large-area intervals corresponding to the number of heads. Additionally, we propose an area-based k-means clustering approach specifically tailored for the anchor boxes within each of these intervals. Moreover, we adjust the number of prior boxes generated by k-means clustering according to the training loss function to adapt to bubbles of different sizes. Then, we introduce the ECA (Efficient Channel Attention) mechanism into the neck part of the model to effectively capture inter-channel interactions and enhance feature representation. Subsequently, we incorporate feature concatenation in the neck part to facilitate the fusion of low-level and high-level features, thereby improving the accuracy and generalization ability of the network. Finally, we construct our own dataset containing 980 images of two classes: cement and bubbles. Comparative experiments are conducted on our dataset using YOLOv5s, YOLOv6s, YOLOxs, and our method. Experimental results demonstrate that the proposed method achieves the highest detection accuracy in terms of mAP0.5, mAP0.75, and mAP0.5:0.95. Compared to YOLOv5s, our method achieves a 7.1% improvement in mAP0.5, a 3.7% improvement in mAP0.75, and a 4.5% improvement in mAP0.5:0.95.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mp4完成签到 ,获得积分10
刚刚
凌兰完成签到 ,获得积分10
刚刚
plain完成签到,获得积分10
1秒前
陌上花开完成签到,获得积分10
2秒前
3秒前
fg2477完成签到,获得积分10
4秒前
忙碌的数学人完成签到,获得积分10
4秒前
情怀应助Engen采纳,获得10
4秒前
HJJHJH完成签到,获得积分10
6秒前
Bob发布了新的文献求助10
7秒前
8秒前
9秒前
HJJHJH发布了新的文献求助50
10秒前
JW完成签到,获得积分10
10秒前
wanci应助张参采纳,获得10
11秒前
谦让的西装完成签到 ,获得积分10
12秒前
李演员完成签到,获得积分10
13秒前
fei菲飞完成签到,获得积分10
13秒前
15秒前
Zhaowx完成签到,获得积分10
15秒前
Theprisoners完成签到,获得积分0
15秒前
木子发布了新的文献求助30
15秒前
15秒前
下课了吧完成签到,获得积分10
16秒前
丘比特应助xialuoke采纳,获得10
17秒前
zgt01发布了新的文献求助10
19秒前
linfordlu完成签到,获得积分0
19秒前
清浅发布了新的文献求助10
20秒前
风趣的涵柏完成签到,获得积分10
21秒前
23秒前
Chen完成签到 ,获得积分10
24秒前
25秒前
木樨完成签到,获得积分10
26秒前
科研顺利完成签到,获得积分10
27秒前
Bin完成签到,获得积分10
28秒前
gszy1975发布了新的文献求助10
28秒前
十曰发布了新的文献求助10
29秒前
30秒前
30秒前
jiaolulu发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022