An Improved YOLOv5 Model for Concrete Bubble Detection Based on Area K-Means and ECANet

气泡 材料科学 机械 物理
作者
Wei Tian,Bazhou Li,Jingjing Cao,Feichao Di,Yang Li,Бо Лю
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (17): 2777-2777
标识
DOI:10.3390/math12172777
摘要

The appearance quality of fair-faced concrete plays a crucial role in evaluating the engineering quality, as the abundance of small-area bubbles generated during construction diminishes the surface quality of concrete. However, existing methods are plagued by sluggish detection speed and inadequate accuracy. Therefore, this paper proposes an improved method based on YOLOv5 to rapidly and accurately detect small bubble defects on the surface of fair-faced concrete. Firstly, to address the issue of YOLOv5 in generating prior boxes for imbalanced samples, we divide the image preprocessing part into small-, medium-, and large-area intervals corresponding to the number of heads. Additionally, we propose an area-based k-means clustering approach specifically tailored for the anchor boxes within each of these intervals. Moreover, we adjust the number of prior boxes generated by k-means clustering according to the training loss function to adapt to bubbles of different sizes. Then, we introduce the ECA (Efficient Channel Attention) mechanism into the neck part of the model to effectively capture inter-channel interactions and enhance feature representation. Subsequently, we incorporate feature concatenation in the neck part to facilitate the fusion of low-level and high-level features, thereby improving the accuracy and generalization ability of the network. Finally, we construct our own dataset containing 980 images of two classes: cement and bubbles. Comparative experiments are conducted on our dataset using YOLOv5s, YOLOv6s, YOLOxs, and our method. Experimental results demonstrate that the proposed method achieves the highest detection accuracy in terms of mAP0.5, mAP0.75, and mAP0.5:0.95. Compared to YOLOv5s, our method achieves a 7.1% improvement in mAP0.5, a 3.7% improvement in mAP0.75, and a 4.5% improvement in mAP0.5:0.95.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助落卿然采纳,获得10
1秒前
1秒前
失眠语梦完成签到,获得积分10
1秒前
化学发布了新的文献求助10
1秒前
HELAOBAN发布了新的文献求助10
1秒前
1秒前
1秒前
znn发布了新的文献求助10
2秒前
gg发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
碧蓝贞发布了新的文献求助10
4秒前
orixero应助wangbin743采纳,获得10
4秒前
4秒前
文明8发布了新的文献求助10
5秒前
Awojiuzheyang发布了新的文献求助10
5秒前
呜呜完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
隐形曼青应助HELAOBAN采纳,获得10
6秒前
6秒前
李健应助耍酷的小土豆采纳,获得10
6秒前
7秒前
啊蒙完成签到,获得积分10
8秒前
8秒前
stefan发布了新的文献求助10
9秒前
yanjiuhuzu完成签到,获得积分10
9秒前
9秒前
慕青应助crowd_lpy采纳,获得10
10秒前
10秒前
饱满以松发布了新的文献求助10
10秒前
wjx发布了新的文献求助10
11秒前
Rondab应助落卿然采纳,获得10
11秒前
11秒前
12秒前
Ava应助稳重的绝施采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202