Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:3
标识
DOI:10.1088/2057-1976/ad7267
摘要

Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
chao发布了新的文献求助10
4秒前
4秒前
Yang发布了新的文献求助10
5秒前
7秒前
7秒前
ppp完成签到,获得积分20
7秒前
阳光的成风完成签到,获得积分10
9秒前
常绝山完成签到 ,获得积分10
9秒前
水下月发布了新的文献求助10
9秒前
Creshiki发布了新的文献求助10
9秒前
zouhui发布了新的文献求助10
10秒前
ppp发布了新的文献求助10
10秒前
似乎一场梦完成签到,获得积分10
11秒前
王亲近发布了新的文献求助10
13秒前
13秒前
成就的咖啡完成签到 ,获得积分10
13秒前
13秒前
chao完成签到,获得积分10
14秒前
华仔应助王肖宁采纳,获得10
15秒前
浮游应助汕头凯奇采纳,获得10
15秒前
机智的雁荷完成签到 ,获得积分10
15秒前
cooper发布了新的文献求助10
16秒前
John发布了新的文献求助10
16秒前
leiyang49完成签到,获得积分10
19秒前
今后应助Creshiki采纳,获得10
21秒前
叮叮叮发布了新的文献求助10
21秒前
21秒前
ls完成签到,获得积分10
21秒前
24秒前
充电宝应助科研小渣渣采纳,获得10
25秒前
Owen应助婷婷的大宝剑采纳,获得10
29秒前
shhoing应助乆乆乆乆采纳,获得10
29秒前
30秒前
直率的砖头完成签到,获得积分10
30秒前
阳光问安完成签到 ,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003