亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:3
标识
DOI:10.1088/2057-1976/ad7267
摘要

Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoeyJin完成签到,获得积分10
4秒前
我是老大应助科研王者采纳,获得10
4秒前
50秒前
yeeeee发布了新的文献求助10
56秒前
ttkx发布了新的文献求助10
1分钟前
CipherSage应助yeeeee采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
artos发布了新的文献求助30
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI6应助artos采纳,获得10
2分钟前
华仔应助CC采纳,获得30
3分钟前
3分钟前
CC发布了新的文献求助30
3分钟前
执着梦柏完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
4分钟前
清晨仪仪发布了新的文献求助30
4分钟前
5分钟前
步念发布了新的文献求助30
5分钟前
科研通AI6应助步念采纳,获得30
5分钟前
Ava应助查莉采纳,获得10
5分钟前
清晨仪仪发布了新的文献求助10
5分钟前
麻辣香锅发布了新的文献求助10
6分钟前
科研通AI6应助CC采纳,获得10
6分钟前
李李爱种花完成签到 ,获得积分10
6分钟前
6分钟前
查莉发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助麻辣香锅采纳,获得10
6分钟前
6分钟前
7分钟前
小萌兽完成签到 ,获得积分10
7分钟前
ysy完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053