Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:1
标识
DOI:10.1088/2057-1976/ad7267
摘要

Abstract Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model’s efficiency. Each ML method’s computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的萤完成签到,获得积分10
刚刚
还好完成签到,获得积分10
3秒前
3秒前
3秒前
淡然醉冬发布了新的文献求助10
4秒前
4秒前
所所应助nanfeng采纳,获得10
4秒前
在水一方应助学医小麻花采纳,获得10
5秒前
复杂访冬完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
无花果应助月棺轻城采纳,获得10
8秒前
8秒前
复杂访冬发布了新的文献求助10
8秒前
9秒前
9秒前
Zola发布了新的文献求助10
9秒前
打打应助阿泽采纳,获得50
10秒前
培培完成签到 ,获得积分10
11秒前
11秒前
司空豁发布了新的文献求助10
11秒前
85号星星完成签到,获得积分10
12秒前
南风发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
yu发布了新的文献求助10
14秒前
14秒前
FML夏完成签到,获得积分10
15秒前
共享精神应助FY采纳,获得10
15秒前
终澈发布了新的文献求助10
15秒前
楼兰刀客发布了新的文献求助10
15秒前
无花果应助江南小水龟采纳,获得10
17秒前
调研昵称发布了新的文献求助10
17秒前
放寒假的发布了新的文献求助10
18秒前
18秒前
ma发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664