已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:3
标识
DOI:10.1088/2057-1976/ad7267
摘要

Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
dengdeng发布了新的文献求助10
刚刚
吴荣方发布了新的文献求助10
2秒前
壮观大炮完成签到,获得积分10
2秒前
小蘑菇应助热情的未来采纳,获得10
3秒前
Jasper应助轻松的小曾采纳,获得10
4秒前
酷波er应助内向的绿海采纳,获得10
7秒前
充电宝应助内向的绿海采纳,获得10
7秒前
鈮宝完成签到 ,获得积分10
7秒前
WerWu完成签到,获得积分0
10秒前
10秒前
11秒前
医疗废物专用车乘客完成签到,获得积分10
13秒前
小曾发布了新的文献求助10
14秒前
wwt发布了新的文献求助10
16秒前
FashionBoy应助内向的绿海采纳,获得10
19秒前
19秒前
三泥完成签到,获得积分10
19秒前
Fn完成签到 ,获得积分10
21秒前
Momomo应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
Momomo应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
24秒前
朱砂完成签到,获得积分10
25秒前
共享精神应助nickel采纳,获得10
25秒前
重要的水壶完成签到,获得积分10
26秒前
枝头树上的布谷鸟完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426