Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:3
标识
DOI:10.1088/2057-1976/ad7267
摘要

Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上完成签到,获得积分10
刚刚
1秒前
慕青应助王宁采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
1秒前
Mn完成签到,获得积分10
2秒前
2秒前
yulinhai发布了新的文献求助10
2秒前
kranran完成签到,获得积分10
2秒前
完美无敌发布了新的文献求助10
3秒前
3秒前
青藤发布了新的文献求助10
3秒前
刘刘佳发布了新的文献求助10
3秒前
奋斗青年应助纯真初曼采纳,获得10
3秒前
3秒前
和谐冬卉完成签到,获得积分20
4秒前
上官以山完成签到,获得积分10
4秒前
PIKAPIKAQ发布了新的文献求助10
4秒前
在水一方应助sinian思念采纳,获得10
4秒前
BAMBOO完成签到,获得积分10
5秒前
Regulus完成签到,获得积分10
5秒前
6秒前
学术垃圾发布了新的文献求助10
6秒前
丘比特应助Lin2019采纳,获得10
6秒前
在水一方应助kenny2023采纳,获得10
6秒前
Spacewings完成签到,获得积分20
7秒前
7秒前
7秒前
杨华启发布了新的文献求助30
7秒前
皓月星辰完成签到,获得积分10
7秒前
负责御姐完成签到,获得积分10
7秒前
8秒前
LHD发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Owen应助Jerry采纳,获得10
9秒前
跳跃毒娘发布了新的文献求助10
9秒前
丘比特应助奇异果熊猫人采纳,获得10
9秒前
浮游应助Dai JZ采纳,获得10
9秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352065
求助须知:如何正确求助?哪些是违规求助? 4485004
关于积分的说明 13961490
捐赠科研通 4384753
什么是DOI,文献DOI怎么找? 2409168
邀请新用户注册赠送积分活动 1401603
关于科研通互助平台的介绍 1375188