清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:3
标识
DOI:10.1088/2057-1976/ad7267
摘要

Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model's efficiency. Each ML method's computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
regene完成签到,获得积分10
27秒前
lyyyyyy完成签到 ,获得积分10
52秒前
郑关胜完成签到,获得积分10
1分钟前
沉沉完成签到 ,获得积分0
2分钟前
2分钟前
韩明佐完成签到 ,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
所所应助阿泽采纳,获得30
5分钟前
多亿点完成签到 ,获得积分10
6分钟前
Re完成签到 ,获得积分10
6分钟前
热情依白完成签到 ,获得积分10
6分钟前
酷然完成签到,获得积分20
6分钟前
creep2020完成签到,获得积分10
6分钟前
爱学习的小钟完成签到 ,获得积分10
6分钟前
狐妖完成签到,获得积分10
6分钟前
喜悦的唇彩完成签到,获得积分10
6分钟前
黑大侠完成签到 ,获得积分0
6分钟前
朱婷完成签到 ,获得积分10
7分钟前
合适的破茧完成签到,获得积分10
7分钟前
Dryang完成签到 ,获得积分10
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
神明完成签到 ,获得积分10
8分钟前
yushiolo完成签到 ,获得积分10
9分钟前
Ttimer完成签到,获得积分10
9分钟前
9分钟前
阿泽发布了新的文献求助30
9分钟前
湘崽丫完成签到 ,获得积分10
9分钟前
10分钟前
11发布了新的文献求助20
10分钟前
chichenglin完成签到 ,获得积分0
10分钟前
风中元瑶完成签到 ,获得积分10
11分钟前
研友_Zb1rln完成签到,获得积分10
11分钟前
彭于晏应助刘述采纳,获得10
11分钟前
11分钟前
刘述发布了新的文献求助10
11分钟前
wykion完成签到,获得积分0
12分钟前
做不了一点科研完成签到 ,获得积分10
13分钟前
drhwang完成签到 ,获得积分10
13分钟前
Rebeccaiscute完成签到 ,获得积分10
13分钟前
杰尼乾乾完成签到 ,获得积分10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565117
求助须知:如何正确求助?哪些是违规求助? 4649934
关于积分的说明 14689358
捐赠科研通 4591801
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463084