Comparison review of image classification techniques for early diagnosis of diabetic retinopathy

糖尿病性视网膜病变 计算机科学 人工智能 医学 眼科 模式识别(心理学) 糖尿病 内分泌学
作者
Chayarat Wangweera,Plínio Zanini
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 062001-062001 被引量:1
标识
DOI:10.1088/2057-1976/ad7267
摘要

Abstract Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR to prevent vision loss. This paper compares and analyzes the various Machine Learning (ML) techniques, from traditional ML to advanced Deep Learning models. We compared and analyzed the efficacy of Convolutional Neural Networks (CNNs), Capsule Networks (CapsNet), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), decision trees, and Random Forests. This paper also considers determining factors in the evaluation, including contrast enhancements, noise reduction, grayscaling, etc We analyze recent research studies and compare methodologies and metrics, including accuracy, precision, sensitivity, and specificity. The findings highlight the advanced performance of Deep Learning (DL) models, with CapsNet achieving a remarkable accuracy of up to 97.98% and a high precision rate, outperforming other traditional ML methods. The Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing technique substantially enhanced the model’s efficiency. Each ML method’s computational requirements are also considered. While most advanced deep learning methods performed better according to the metrics, they are more computationally complex, requiring more resources and data input. We also discussed how datasets like MESSIDOR could be more straightforward and contribute to highly evaluated performance and that there is a lack of consistency regarding benchmark datasets across papers in the field. Using the DL models facilitates accurate early detection for DR screening, can potentially reduce vision loss risks, and improves accessibility and cost-efficiency of eye screening. Further research is recommended to extend our findings by building models with public datasets, experimenting with ensembles of DL and traditional ML models, and considering testing high-performing models like CapsNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海应助Aten采纳,获得10
刚刚
刚刚
刚刚
shunlibiye完成签到,获得积分10
1秒前
Novermber发布了新的文献求助10
1秒前
小乔同学完成签到,获得积分10
2秒前
金熙美完成签到,获得积分10
2秒前
床头经济学完成签到,获得积分10
2秒前
安静的幻竹完成签到,获得积分10
3秒前
背后的傥完成签到,获得积分10
3秒前
飞飞飞飞飞完成签到,获得积分10
3秒前
迷人寻冬发布了新的文献求助10
3秒前
ZYao65发布了新的文献求助10
3秒前
4秒前
HaHa007完成签到,获得积分10
4秒前
fs发布了新的文献求助10
5秒前
@@@发布了新的文献求助10
6秒前
yl完成签到,获得积分20
6秒前
6秒前
共享精神应助啦啦啦采纳,获得10
7秒前
7秒前
Novermber完成签到,获得积分20
7秒前
丘比特应助Xk采纳,获得10
7秒前
8秒前
小王完成签到,获得积分10
8秒前
kyleaa完成签到,获得积分10
8秒前
白凌珍完成签到,获得积分10
8秒前
负责小蜜蜂完成签到,获得积分10
9秒前
9秒前
科研牛马完成签到,获得积分10
10秒前
10秒前
lzx发布了新的文献求助10
10秒前
yl发布了新的文献求助50
10秒前
深时发布了新的文献求助30
11秒前
fffff完成签到,获得积分10
11秒前
情怀应助外向的新儿采纳,获得10
11秒前
爱笑宛亦完成签到,获得积分10
12秒前
99999sun完成签到,获得积分10
12秒前
lixm发布了新的文献求助10
12秒前
陈小陈完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582