清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PepBinding: A Workflow for Predicting Peptide Binding Structures by Combining Peptide Docking and Peptide Gaussian Accelerated Molecular Dynamics Simulations

对接(动物) 分子动力学 工作流程 计算机科学 高斯分布 计算生物学 化学 生物系统 计算化学 生物化学 生物 数据库 医学 护理部
作者
Jinan Wang,Kushal Koirala,N. Hung,Yinglong Miao
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (30): 7332-7340
标识
DOI:10.1021/acs.jpcb.4c02047
摘要

Predicting protein-peptide interactions is crucial for understanding peptide binding processes and designing peptide drugs. However, traditional computational modeling approaches face challenges in accurately predicting peptide-protein binding structures due to the slow dynamics and high flexibility of the peptides. Here, we introduce a new workflow termed "PepBinding" for predicting peptide binding structures, which combines peptide docking, all-atom enhanced sampling simulations using the Peptide Gaussian accelerated Molecular Dynamics (Pep-GaMD) method, and structural clustering. PepBinding has been demonstrated on seven distinct model peptides. In peptide docking using HPEPDOCK, the peptide backbone root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray structures ranged from 3.8 to 16.0 Å, corresponding to the medium to inaccurate quality models according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria. The Pep-GaMD simulations performed for only 200 ns significantly improved the docking models, resulting in five medium and two acceptable quality models. Therefore, PepBinding is an efficient workflow for predicting peptide binding structures and is publicly available at https://github.com/MiaoLab20/PepBinding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙海沉戈完成签到,获得积分0
刚刚
雪山飞龙完成签到,获得积分10
20秒前
23秒前
24秒前
11111发布了新的文献求助10
26秒前
11111完成签到,获得积分10
36秒前
WJZ完成签到 ,获得积分10
40秒前
上官若男应助ZHANGZHANG采纳,获得10
50秒前
赘婿应助飞翔的企鹅采纳,获得10
57秒前
1分钟前
XD824完成签到,获得积分10
1分钟前
XD824发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ZHANGZHANG发布了新的文献求助10
1分钟前
lyj完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
ZJ完成签到,获得积分10
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
2分钟前
感动清炎完成签到,获得积分10
2分钟前
2分钟前
TS6539完成签到,获得积分10
2分钟前
2分钟前
andre20完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
蛋炒饭i发布了新的文献求助80
2分钟前
李沐唅完成签到 ,获得积分10
2分钟前
xue完成签到 ,获得积分10
2分钟前
violetlishu完成签到 ,获得积分10
2分钟前
sfjww发布了新的文献求助30
2分钟前
sfjww完成签到,获得积分20
3分钟前
蛋炒饭i完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
baobeikk完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098