Identifying Key Clinical Indicators Associated with the Risk of Death in Hospitalized COVID-19 Patients

2019年冠状病毒病(COVID-19) 钥匙(锁) 2019-20冠状病毒爆发 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 重症监护医学 内科学 病毒学 计算机科学 计算机安全 疾病 传染病(医学专业) 爆发
作者
Qinglan Ma,Jingxin Ren,Lei Chen,Wei Guo,Kai‐Yan Feng,Tao Huang,Yu-Dong Cai
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0115748936306893240720192301
摘要

Background: Accurately predicting survival in hospitalized COVID-19 patients is crucial but challenging due to multiple risk factors. This study addresses the limitations of existing research by proposing a comprehensive machine-learning framework to identify key mortality risk factors and develop a robust predictive model. Objective: This study proposes an analytical framework that leverages various machine learning techniques to predict the survival of hospitalized COVID-19 patients accurately. The framework comprehensively evaluates multiple clinical indicators and their associations with mortality risk. Method: Patient data, including gender, age, health condition, and smoking habits, was divided into discharged (n=507) and deceased (n=300) categories. Each patient was characterized by 92 clinical features. The framework incorporated seven feature ranking algorithms (LASSO, LightGBM, MCFS, mRMR, RF, CATBoost, and XGBoost), the IFS method, and four classification algorithms (DT, KNN, RF, and SVM). Results: Age, diabetes, dyspnea, chronic kidney failure, and high blood pressure were identified as the most important risk factors. The best model achieved an F1-score of 0.857 using KNN with 34 selected features. Conclusion: Our findings provide a comprehensive analysis of COVID-19 mortality risk factors and develops a robust predictive model. The findings highlight the increased risk in patients with comorbidities, consistent with existing literature. The proposed framework can aid in developing personalized treatment plans and allocating healthcare resources effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨宏章完成签到,获得积分10
1秒前
蜡笔小欣发布了新的文献求助10
1秒前
1秒前
等风的人完成签到,获得积分10
2秒前
Muller完成签到,获得积分10
3秒前
3秒前
3秒前
称心乐枫完成签到,获得积分10
3秒前
Hello应助欢欢呀采纳,获得10
3秒前
豆豆发布了新的文献求助10
3秒前
CipherSage应助王一采纳,获得10
4秒前
4秒前
哈哈哈卷发布了新的文献求助10
4秒前
5秒前
CipherSage应助蚂蚁Y嘿采纳,获得10
5秒前
三三完成签到 ,获得积分10
5秒前
烟花应助一个好昵称采纳,获得30
6秒前
6秒前
6秒前
一个兜兜完成签到,获得积分10
6秒前
言无间发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Ava应助可乐采纳,获得10
7秒前
在水一方应助GGGG采纳,获得10
9秒前
呼了个呼完成签到,获得积分10
9秒前
兴奋大地完成签到,获得积分10
10秒前
redisni完成签到,获得积分10
10秒前
10秒前
11秒前
田様应助Urologyzz采纳,获得10
11秒前
sanages给sanages的求助进行了留言
12秒前
12秒前
12秒前
帅气书文完成签到,获得积分10
12秒前
科研不通完成签到,获得积分10
12秒前
13秒前
13秒前
azusa发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288