已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Driving style recognition considering speeding behavior under different working conditions

风格(视觉艺术) 计算机科学 认知心理学 心理学 人工智能 艺术 视觉艺术
作者
Bingzhan Zhang,Ziheng Yang,Gufeng Kang,Yong Huang,Zhongtao Liu,Boqian Bian
标识
DOI:10.1177/09544070241282035
摘要

The driving style of the driver has a significant impact on the safety of vehicle operation. This paper proposes a driving style recognition model that takes into account speeding behavior, aiming to improve the accuracy of driving style recognition. Initially, vehicle operation data is collected through on-road experiments with drivers. Subsequently, feature parameters related to driving conditions are extracted from the vehicle operation data, and dimensionality reduction is applied to these parameters. The principal components extracted are then utilized as inputs for the particle swarm optimization support vector machine algorithm to determine driving conditions. This information is used to establish the speeding threshold, which is then used to calculate the number of speeding occurrences and the longest speeding time as evaluation indicators. These indicators are integrated into a comprehensive evaluation system comprising 18 evaluation criteria to improve the accuracy of driving style recognition. Lastly, the particle swarm optimization support vector machine algorithm and convolutional neural network algorithm are employed for driving style recognition. The results indicate that the particle swarm optimization support vector machine algorithm demonstrates fewer iterations and higher accuracy, reaching 97.4%. Furthermore, both algorithms show improved accuracy in driving style recognition when considering speeding behavior, affirming that the inclusion of speeding behavior enhances the accuracy of driving style recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
黑球完成签到,获得积分10
5秒前
8秒前
8秒前
认真的傲柏完成签到,获得积分10
8秒前
李志全完成签到 ,获得积分10
16秒前
稳重的蜜蜂完成签到,获得积分10
19秒前
Endlessway应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
起风了完成签到 ,获得积分10
21秒前
彭于晏应助dkb采纳,获得10
24秒前
Zoe完成签到 ,获得积分10
27秒前
嗯哼举报一二三四求助涉嫌违规
29秒前
orixero应助幽默果汁采纳,获得10
29秒前
30秒前
35秒前
36秒前
cosimo完成签到 ,获得积分10
38秒前
43秒前
小蘑菇应助紧张的店员采纳,获得10
48秒前
yaoccccchen发布了新的文献求助50
49秒前
NexusExplorer应助August采纳,获得10
49秒前
yangjoy完成签到 ,获得积分10
52秒前
54秒前
大大大大管子完成签到 ,获得积分10
56秒前
57秒前
Hayat发布了新的文献求助10
58秒前
www完成签到,获得积分10
1分钟前
wucl1990发布了新的文献求助10
1分钟前
yaoccccchen完成签到,获得积分10
1分钟前
852应助小全采纳,获得10
1分钟前
lixia完成签到 ,获得积分10
1分钟前
yy完成签到,获得积分20
1分钟前
精明的迎松应助Hayat采纳,获得10
1分钟前
gladuhere完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hyian发布了新的文献求助10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223779
求助须知:如何正确求助?哪些是违规求助? 2872209
关于积分的说明 8179340
捐赠科研通 2539100
什么是DOI,文献DOI怎么找? 1371152
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010