Acute heart failure (AHF) in the intensive care unit (ICU) is characterized by its criticality, rapid progression, complex and changeable condition, and its pathophysiological process involves the interaction of multiple organs and systems. This makes it difficult to predict in-hospital mortality events comprehensively and accurately. Traditional analysis methods based on statistics and machine learning suffer from insufficient model performance, poor accuracy caused by prior dependence, and difficulty in adequately considering the complex relationships between multiple risk factors. Therefore, the application of deep neural network (DNN) techniques to the specific scenario, predicting mortality events of patients with AHF under intensive care, has become a research frontier.