Large-Scale Proteomics in Early Pregnancy and Hypertensive Disorders of Pregnancy

医学 怀孕 产科 蛋白质组学 妇科 生物化学 化学 遗传学 基因 生物
作者
Philip Greenland,Mark R. Segal,Rebecca B. McNeil,Corette B. Parker,Victoria L. Pemberton,William A. Grobman,Robert M. Silver,Hyagriv N. Simhan,George R. Saade,Peter Ganz,Priya Mehta,Janet M. Catov,C. Noel Bairey Merz,Jasmina Varagić,Sadiya S. Khan,Samuel Parry,Uma M. Reddy,Brian M. Mercer,Ronald J. Wapner,David M. Haas
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (9): 791-791
标识
DOI:10.1001/jamacardio.2024.1621
摘要

Importance There is no consensus regarding the best method for prediction of hypertensive disorders of pregnancy (HDP), including gestational hypertension and preeclampsia. Objective To determine predictive ability in early pregnancy of large-scale proteomics for prediction of HDP. Design, Setting, and Participants This was a nested case-control study, conducted in 2022 to 2023, using clinical data and plasma samples collected between 2010 and 2013 during the first trimester, with follow-up until pregnancy outcome. This multicenter observational study took place at 8 academic medical centers in the US. Nulliparous individuals during first-trimester clinical visits were included. Participants with HDP were selected as cases; controls were selected from those who delivered at or after 37 weeks without any HDP, preterm birth, or small-for-gestational-age infant. Age, self-reported race and ethnicity, body mass index, diabetes, health insurance, and fetal sex were available covariates. Exposures Proteomics using an aptamer-based assay that included 6481 unique human proteins was performed on stored plasma. Covariates were used in predictive models. Main Outcomes and Measures Prediction models were developed using the elastic net, and analyses were performed on a randomly partitioned training dataset comprising 80% of study participants, with the remaining 20% used as an independent testing dataset. Primary measure of predictive performance was area under the receiver operating characteristic curve (AUC). Results This study included 753 HDP cases and 1097 controls with a mean (SD) age of 26.9 (5.5) years. Maternal race and ethnicity were 51 Asian (2.8%), 275 non-Hispanic Black (14.9%), 275 Hispanic (14.9%), 1161 non-Hispanic White (62.8% ), and 88 recorded as other (4.8%), which included those who did not identify according to these designations. The elastic net model, allowing for forced inclusion of prespecified covariates, was used to adjust protein-based models for clinical and demographic variables. Under this approach, no proteins were selected to augment the clinical and demographic covariates. The predictive performance of the resulting model was modest, with a training set AUC of 0.64 (95% CI, 0.61-0.67) and a test set AUC of 0.62 (95% CI, 0.56-0.68). Further adjustment for study site yielded only minimal changes in AUCs. Conclusions and Relevance In this case-control study with detailed clinical data and stored plasma samples available in the first trimester, an aptamer-based proteomics panel did not meaningfully add to predictive utility over and above clinical and demographic factors that are routinely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经白亦完成签到 ,获得积分10
刚刚
妮妮完成签到,获得积分10
1秒前
zar完成签到,获得积分10
3秒前
科研通AI2S应助华hgger采纳,获得10
4秒前
4秒前
纪逊完成签到,获得积分10
5秒前
BlingBling的我呀完成签到,获得积分10
6秒前
7秒前
着急的小蜜蜂关注了科研通微信公众号
8秒前
大笨冰完成签到 ,获得积分10
8秒前
一研一个不吱声完成签到,获得积分10
8秒前
8秒前
吱哦周发布了新的文献求助10
10秒前
11秒前
落后乐萱发布了新的文献求助10
11秒前
美丽怜容发布了新的文献求助20
11秒前
12秒前
慕青应助优雅的帅哥采纳,获得10
13秒前
AU完成签到,获得积分10
14秒前
15秒前
zxnzsz发布了新的文献求助10
16秒前
fryeia完成签到,获得积分10
16秒前
爆米花发布了新的文献求助10
18秒前
北冰石完成签到,获得积分10
18秒前
Dandelion完成签到,获得积分10
23秒前
故意的雨南完成签到,获得积分10
24秒前
QAQ完成签到,获得积分10
24秒前
dalong完成签到,获得积分10
25秒前
大个应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得30
26秒前
26秒前
找不到应助科研通管家采纳,获得10
26秒前
pcr163应助科研通管家采纳,获得100
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140405
求助须知:如何正确求助?哪些是违规求助? 2791283
关于积分的说明 7798359
捐赠科研通 2447650
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194