Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103263-103263
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
IvanMcRae应助科研通管家采纳,获得30
刚刚
wu8577应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2155saa发布了新的文献求助20
1秒前
1秒前
3秒前
shy完成签到,获得积分10
5秒前
6秒前
gloooow发布了新的文献求助10
7秒前
9秒前
11秒前
淡淡诗柳完成签到 ,获得积分10
13秒前
博修发布了新的文献求助10
14秒前
byw07完成签到 ,获得积分10
15秒前
陶醉觅夏发布了新的文献求助10
15秒前
16秒前
Joe完成签到,获得积分10
16秒前
17秒前
18秒前
2155saa完成签到,获得积分10
18秒前
科研通AI2S应助王学成采纳,获得10
20秒前
skr发布了新的文献求助10
20秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517