Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103263-103263 被引量:4
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
毛健发布了新的文献求助10
1秒前
BowieHuang应助谨慎的寒松采纳,获得10
1秒前
四叶菜完成签到,获得积分20
2秒前
finish完成签到 ,获得积分10
5秒前
烟花应助正在通话中采纳,获得10
5秒前
6秒前
doctorduanmu完成签到,获得积分10
6秒前
6秒前
7秒前
ttkx_8应助天份采纳,获得10
7秒前
万能图书馆应助qiu采纳,获得10
8秒前
8秒前
WJR完成签到,获得积分10
9秒前
9秒前
米亚完成签到 ,获得积分10
10秒前
冰糖雪梨完成签到,获得积分10
11秒前
上官若男应助毛健采纳,获得10
11秒前
WJR发布了新的文献求助10
12秒前
Mcintosh完成签到,获得积分10
12秒前
搬砖美少女完成签到,获得积分10
13秒前
sevenlalala完成签到,获得积分10
13秒前
13秒前
正在通话中完成签到,获得积分10
13秒前
15秒前
徐安琪完成签到,获得积分10
15秒前
16秒前
科研通AI6.1应助天雨流芳采纳,获得10
17秒前
orixero应助燃烧的皮皮虾采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
pp应助zxy采纳,获得20
19秒前
19秒前
小怪兽不吃人完成签到,获得积分10
19秒前
斯文败类应助WJR采纳,获得10
21秒前
朝夕完成签到 ,获得积分10
21秒前
机灵凌雪完成签到 ,获得积分10
22秒前
洪亭完成签到 ,获得积分10
22秒前
22秒前
Akim应助小怪兽不吃人采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146