Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103263-103263
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李暴龙发布了新的文献求助10
刚刚
达芙妮发布了新的文献求助10
刚刚
念心发布了新的文献求助10
1秒前
RJL完成签到,获得积分10
1秒前
awu发布了新的文献求助10
2秒前
Getlogger完成签到,获得积分10
3秒前
赵哥发布了新的文献求助10
3秒前
3秒前
早点毕业完成签到 ,获得积分10
3秒前
寒冷的觅露完成签到,获得积分10
3秒前
4秒前
末班车完成签到,获得积分10
5秒前
lcj完成签到,获得积分20
5秒前
有机合成学渣完成签到 ,获得积分10
6秒前
6秒前
胡大嘴先生完成签到,获得积分10
6秒前
8秒前
jennie发布了新的文献求助10
8秒前
科研通AI2S应助丸子采纳,获得10
8秒前
畅快的文龙完成签到,获得积分10
9秒前
10秒前
wisteety完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
末班车发布了新的文献求助100
13秒前
呓语完成签到,获得积分10
13秒前
14秒前
14秒前
话梅糖糖完成签到,获得积分20
14秒前
田様应助淡然的寻冬采纳,获得10
14秒前
希望天下0贩的0应助热木采纳,获得10
14秒前
溪鱼应助金子采纳,获得10
15秒前
YOKO完成签到,获得积分10
15秒前
gz完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助Changlu采纳,获得30
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419