Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103263-103263 被引量:4
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuqiansd发布了新的文献求助10
刚刚
科研通AI6应助棉花糖采纳,获得10
刚刚
1秒前
奇异果发布了新的文献求助10
2秒前
无限符号发布了新的文献求助10
2秒前
Mtoc发布了新的文献求助10
4秒前
4秒前
4秒前
jinze完成签到,获得积分10
4秒前
5秒前
5秒前
菠萝Vicky完成签到,获得积分10
6秒前
黑马王子发布了新的文献求助10
6秒前
6秒前
7秒前
星辰大海应助无心的闭月采纳,获得10
7秒前
艾莉完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
racill发布了新的文献求助10
9秒前
敏敏发布了新的文献求助10
10秒前
菠萝Vicky发布了新的文献求助10
10秒前
10秒前
迷路尔容完成签到,获得积分10
11秒前
wzg666发布了新的文献求助10
11秒前
科研通AI6应助黑马王子采纳,获得10
12秒前
渊_发布了新的文献求助10
12秒前
12秒前
要开心吖完成签到 ,获得积分10
13秒前
13秒前
15秒前
小李发布了新的文献求助10
15秒前
学术小白发布了新的文献求助10
15秒前
酷波er应助迁湾采纳,获得10
15秒前
小羊完成签到 ,获得积分10
16秒前
WANJCE发布了新的文献求助10
16秒前
小白发布了新的文献求助10
17秒前
Shan完成签到 ,获得积分10
17秒前
耍酷的甜瓜完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937