Guided image generation for improved surgical image segmentation

计算机科学 人工智能 分割 生成模型 生成语法 注释 模式识别(心理学) 图像分割 机器学习
作者
Emanuele Colleoni,Ricardo Sanchez Matilla,Imanol Luengo,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103263-103263
标识
DOI:10.1016/j.media.2024.103263
摘要

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ysx发布了新的文献求助10
刚刚
合适含蕾完成签到,获得积分10
2秒前
JamesBill发布了新的文献求助10
3秒前
wbr完成签到,获得积分20
3秒前
饱满若灵发布了新的文献求助10
4秒前
Ann发布了新的文献求助30
4秒前
5秒前
合适含蕾发布了新的文献求助10
5秒前
zhangyujin完成签到,获得积分10
6秒前
zcydbttj2011发布了新的文献求助10
7秒前
Jackson完成签到,获得积分10
8秒前
8秒前
传奇3应助wufan采纳,获得10
10秒前
luluan完成签到,获得积分10
11秒前
科研狗发布了新的文献求助10
11秒前
张张张完成签到,获得积分10
11秒前
missjucinda完成签到,获得积分10
12秒前
无情招牌发布了新的文献求助10
13秒前
李文强完成签到,获得积分10
14秒前
14秒前
科研通AI5应助ff采纳,获得10
14秒前
久伴久爱完成签到 ,获得积分10
17秒前
皮卡丘发布了新的文献求助10
18秒前
lxz发布了新的文献求助10
19秒前
田様应助黄花轮采纳,获得10
20秒前
麦麦完成签到,获得积分10
22秒前
等待的士晋完成签到 ,获得积分10
24秒前
Archer0236发布了新的文献求助10
24秒前
24秒前
CiCi发布了新的文献求助10
25秒前
25秒前
26秒前
苏苏苏苏完成签到,获得积分10
27秒前
27秒前
自然白安完成签到,获得积分10
28秒前
东东发布了新的文献求助10
29秒前
31秒前
KevinSun完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434