Disease trend analysis platform accurately predicts the occurrence of cervical cancer under mixed diseases

宫颈癌 疾病 医学 癌症 计算机科学 内科学
作者
Yuchao Liang,Yuting Guo,Yifei Zhai,Jian Zhou,Wuritu Yang,Yongchun Zuo
出处
期刊:Methods [Elsevier BV]
卷期号:230: 108-115
标识
DOI:10.1016/j.ymeth.2024.07.011
摘要

Cervical cancer (CC) is one of the most common gynecological malignancies. Cytological screening, while being the most common and accurate method for detecting cervical cancer, is both time-consuming and costly. Predicting CC based on bioinformatics can assist in the rapid early screening of CC in clinical practice. Most recent CC prediction methods require a large amount of detection data or sequencing data and are not ideal for CC detection in complex disease samples. We developed the Disease trend analysis platform (Dtap), which can quickly predict the occurrence of diseases using only blood routine data. Blood routine data was collected from 1,292 cervical cancer patients, 4,860 patients with complex diseases, and 4,980 healthy individuals from various sources. The results show that the Dtap-based trend model maintained good and stable performance in the prediction task of multiple datasets as well as complex disease samples. Finally, we built DTAPCC (http://bioinfor.imu.edu.cn/dtapcc), a Dtap-based CC disease prediction platform, to help users quickly predict CC and visualize trend features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
完美世界应助楼下太吵了采纳,获得10
刚刚
麟钰完成签到,获得积分10
1秒前
yydragen应助王鹏飞采纳,获得30
1秒前
Seciy完成签到,获得积分10
2秒前
Jasper应助bbdd2334采纳,获得10
3秒前
wy.he应助itsdatou采纳,获得20
3秒前
喜悦的秋柔完成签到,获得积分10
5秒前
5秒前
Valars发布了新的文献求助10
6秒前
Seciy发布了新的文献求助10
6秒前
完美世界应助机智的访云采纳,获得10
6秒前
朴素的问枫完成签到,获得积分10
7秒前
张晓飞完成签到,获得积分10
7秒前
yasiraziz完成签到,获得积分10
8秒前
云栖完成签到,获得积分10
8秒前
领导范儿应助superhero采纳,获得10
8秒前
Singularity应助自觉南风采纳,获得10
8秒前
酷炫的大白完成签到,获得积分10
8秒前
9秒前
闪闪跳跳糖完成签到,获得积分10
10秒前
11秒前
龙韵完成签到,获得积分10
11秒前
12秒前
Self发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
Calvin发布了新的文献求助10
13秒前
13秒前
13秒前
张栋拐完成签到,获得积分10
13秒前
14秒前
Owen应助活力的友安采纳,获得10
14秒前
15秒前
小蘑菇应助古月采纳,获得10
15秒前
Shawn发布了新的文献求助50
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600