Enhancing multimodal depression detection with intra- and inter-sample contrastive learning

判别式 计算机科学 样品(材料) 人工智能 模态(人机交互) 特征(语言学) 机器学习 班级(哲学) 利用 采样(信号处理) 模式识别(心理学) 自然语言处理 语言学 计算机视觉 化学 色谱法 哲学 计算机安全 滤波器(信号处理)
作者
Meiling Li,Yifan Wei,Yangfu Zhu,Siqi Wei,Bin Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:684: 121282-121282
标识
DOI:10.1016/j.ins.2024.121282
摘要

Multimodal depression detection (MDD) has garnered significant interest in recent years. Current methods typically integrate multimodal information within samples to distinguish positive from negative samples, but they often neglect the relationships between samples. Despite similarities within the same class, individual variations exist. By leveraging these relationships, we can provide supervision signals for both inter- and intra-class samples, thereby enhancing the discriminative power of user representations. Inspired by this observation, we introduce IISFD, a novel approach that concurrently exploits intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. This method comprehensively considers information both within individual samples and across samples. Specifically, we decompose the multimodal inputs of each sample, including audio, vision and text, into modality-common features and modality-specific features. To obtain better decomposed feature representations, we integrate intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. Additionally, detailed modal information is obtained through unimodal reconstruction. By passing the decomposed features through a carefully designed multimodal fusion module, we obtain more discriminative user representations. Experimental results on two publicly available datasets demonstrate the superiority of our model, highlighting its effectiveness in leveraging both intra- and inter-sample information for enhanced MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maguodrgon发布了新的文献求助10
刚刚
虚幻的亦旋完成签到,获得积分10
刚刚
2秒前
量子星尘发布了新的文献求助10
3秒前
Babytucky发布了新的文献求助10
3秒前
柴鱼完成签到,获得积分10
5秒前
零琳完成签到 ,获得积分20
6秒前
雪王完成签到,获得积分10
6秒前
7秒前
7秒前
NexusExplorer应助炫彩小陈采纳,获得10
7秒前
10秒前
顾矜应助mds采纳,获得10
12秒前
13秒前
kaier完成签到 ,获得积分0
14秒前
14秒前
15秒前
16秒前
zhuwei完成签到,获得积分10
17秒前
希音发布了新的文献求助10
17秒前
huahua发布了新的文献求助10
18秒前
小鹿呀完成签到,获得积分10
18秒前
19秒前
crescent发布了新的文献求助20
20秒前
21秒前
Babytucky完成签到,获得积分20
21秒前
卜念发布了新的文献求助10
21秒前
正版DY完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
终归发布了新的文献求助10
23秒前
23秒前
23秒前
小二郎应助整齐的尔阳采纳,获得10
24秒前
25秒前
25秒前
RRR发布了新的文献求助10
25秒前
xzy完成签到 ,获得积分10
26秒前
UD完成签到,获得积分20
26秒前
若水发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514