Enhancing multimodal depression detection with intra- and inter-sample contrastive learning

判别式 计算机科学 样品(材料) 人工智能 模态(人机交互) 特征(语言学) 机器学习 班级(哲学) 利用 采样(信号处理) 模式识别(心理学) 自然语言处理 语言学 计算机视觉 化学 色谱法 哲学 计算机安全 滤波器(信号处理)
作者
Meiling Li,Yifan Wei,Yangfu Zhu,Siqi Wei,Bin Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:684: 121282-121282
标识
DOI:10.1016/j.ins.2024.121282
摘要

Multimodal depression detection (MDD) has garnered significant interest in recent years. Current methods typically integrate multimodal information within samples to distinguish positive from negative samples, but they often neglect the relationships between samples. Despite similarities within the same class, individual variations exist. By leveraging these relationships, we can provide supervision signals for both inter- and intra-class samples, thereby enhancing the discriminative power of user representations. Inspired by this observation, we introduce IISFD, a novel approach that concurrently exploits intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. This method comprehensively considers information both within individual samples and across samples. Specifically, we decompose the multimodal inputs of each sample, including audio, vision and text, into modality-common features and modality-specific features. To obtain better decomposed feature representations, we integrate intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. Additionally, detailed modal information is obtained through unimodal reconstruction. By passing the decomposed features through a carefully designed multimodal fusion module, we obtain more discriminative user representations. Experimental results on two publicly available datasets demonstrate the superiority of our model, highlighting its effectiveness in leveraging both intra- and inter-sample information for enhanced MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
4秒前
4秒前
duizhang发布了新的文献求助30
4秒前
5秒前
不要加糖发布了新的文献求助10
5秒前
菠萝派发布了新的文献求助10
5秒前
搜集达人应助qiuqiu采纳,获得30
6秒前
8秒前
可爱的函函应助嘻嘻采纳,获得10
9秒前
Wzh发布了新的文献求助30
9秒前
方向发布了新的文献求助10
10秒前
精明的忆灵完成签到,获得积分10
10秒前
10秒前
sdd完成签到,获得积分10
11秒前
11秒前
11秒前
金皮卡完成签到,获得积分10
13秒前
扎心应助爱笑的稀采纳,获得10
14秒前
14秒前
追寻荔枝发布了新的文献求助10
15秒前
15秒前
看看发布了新的文献求助10
17秒前
Z1987完成签到,获得积分10
17秒前
我爱科研完成签到 ,获得积分10
18秒前
18秒前
20秒前
hcjxj完成签到,获得积分10
21秒前
SYLH应助阚钲翰采纳,获得10
21秒前
CipherSage应助追寻荔枝采纳,获得10
22秒前
22秒前
22秒前
22秒前
elivsZhou发布了新的文献求助200
24秒前
26秒前
肖雪依发布了新的文献求助10
27秒前
高兴123发布了新的文献求助10
28秒前
Singularity应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502250
关于积分的说明 11106925
捐赠科研通 3232714
什么是DOI,文献DOI怎么找? 1787067
邀请新用户注册赠送积分活动 870375
科研通“疑难数据库(出版商)”最低求助积分说明 801994