Enhancing multimodal depression detection with intra- and inter-sample contrastive learning

判别式 计算机科学 样品(材料) 人工智能 模态(人机交互) 特征(语言学) 机器学习 班级(哲学) 利用 采样(信号处理) 模式识别(心理学) 自然语言处理 语言学 计算机视觉 化学 色谱法 哲学 计算机安全 滤波器(信号处理)
作者
Meiling Li,Yifan Wei,Yangfu Zhu,Siqi Wei,Bin Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:684: 121282-121282
标识
DOI:10.1016/j.ins.2024.121282
摘要

Multimodal depression detection (MDD) has garnered significant interest in recent years. Current methods typically integrate multimodal information within samples to distinguish positive from negative samples, but they often neglect the relationships between samples. Despite similarities within the same class, individual variations exist. By leveraging these relationships, we can provide supervision signals for both inter- and intra-class samples, thereby enhancing the discriminative power of user representations. Inspired by this observation, we introduce IISFD, a novel approach that concurrently exploits intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. This method comprehensively considers information both within individual samples and across samples. Specifically, we decompose the multimodal inputs of each sample, including audio, vision and text, into modality-common features and modality-specific features. To obtain better decomposed feature representations, we integrate intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. Additionally, detailed modal information is obtained through unimodal reconstruction. By passing the decomposed features through a carefully designed multimodal fusion module, we obtain more discriminative user representations. Experimental results on two publicly available datasets demonstrate the superiority of our model, highlighting its effectiveness in leveraging both intra- and inter-sample information for enhanced MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三段斗之气完成签到,获得积分10
2秒前
大佬们请帮助我完成签到,获得积分10
3秒前
lalala发布了新的文献求助10
4秒前
lkl完成签到 ,获得积分10
4秒前
CodeCraft应助LT采纳,获得10
5秒前
Jana应助queer采纳,获得10
7秒前
LH完成签到,获得积分10
8秒前
9秒前
anika发布了新的文献求助10
10秒前
九方嘉许应助星星子采纳,获得10
11秒前
天天快乐应助星星子采纳,获得10
11秒前
11秒前
12秒前
肖肖完成签到,获得积分10
13秒前
niko发布了新的文献求助10
13秒前
英俊的铭应助米一早采纳,获得10
14秒前
minima1998完成签到,获得积分20
14秒前
123完成签到,获得积分10
16秒前
XhuaQye发布了新的文献求助10
17秒前
17秒前
18秒前
不安云朵发布了新的文献求助10
18秒前
18秒前
echo完成签到,获得积分10
19秒前
22秒前
话家发布了新的文献求助10
22秒前
22秒前
23秒前
26秒前
CipherSage应助流星采纳,获得10
26秒前
飞翔云端发布了新的文献求助10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
大个应助科研通管家采纳,获得10
27秒前
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293