亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing multimodal depression detection with intra- and inter-sample contrastive learning

判别式 计算机科学 样品(材料) 人工智能 模态(人机交互) 特征(语言学) 机器学习 班级(哲学) 利用 采样(信号处理) 模式识别(心理学) 自然语言处理 语言学 计算机视觉 化学 色谱法 哲学 计算机安全 滤波器(信号处理)
作者
Meiling Li,Yifan Wei,Yangfu Zhu,Siqi Wei,Bin Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:684: 121282-121282
标识
DOI:10.1016/j.ins.2024.121282
摘要

Multimodal depression detection (MDD) has garnered significant interest in recent years. Current methods typically integrate multimodal information within samples to distinguish positive from negative samples, but they often neglect the relationships between samples. Despite similarities within the same class, individual variations exist. By leveraging these relationships, we can provide supervision signals for both inter- and intra-class samples, thereby enhancing the discriminative power of user representations. Inspired by this observation, we introduce IISFD, a novel approach that concurrently exploits intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. This method comprehensively considers information both within individual samples and across samples. Specifically, we decompose the multimodal inputs of each sample, including audio, vision and text, into modality-common features and modality-specific features. To obtain better decomposed feature representations, we integrate intra-sample contrastive learning and inter-sample contrastive learning with hard negative sampling. Additionally, detailed modal information is obtained through unimodal reconstruction. By passing the decomposed features through a carefully designed multimodal fusion module, we obtain more discriminative user representations. Experimental results on two publicly available datasets demonstrate the superiority of our model, highlighting its effectiveness in leveraging both intra- and inter-sample information for enhanced MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KachiRyoji应助风轻萤采纳,获得10
17秒前
32秒前
yangbo666发布了新的文献求助10
40秒前
luluu完成签到,获得积分10
45秒前
我是老大应助三口一头猪采纳,获得10
1分钟前
1分钟前
yangbohhan完成签到,获得积分10
1分钟前
yangbohhan发布了新的文献求助10
1分钟前
科研通AI5应助yangbohhan采纳,获得10
1分钟前
1分钟前
Nill发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
docyuchi发布了新的文献求助10
1分钟前
Orange应助docyuchi采纳,获得10
2分钟前
docyuchi完成签到,获得积分10
2分钟前
赘婿应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI5应助热心愫采纳,获得30
3分钟前
春物叙事曲完成签到,获得积分10
4分钟前
4分钟前
廖梦琪完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
学霸宇大王完成签到 ,获得积分10
4分钟前
5分钟前
风轻萤发布了新的文献求助10
5分钟前
5分钟前
5分钟前
_ban完成签到 ,获得积分10
5分钟前
小红书求接接接接一篇完成签到,获得积分10
5分钟前
6分钟前
潮汐发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611456
求助须知:如何正确求助?哪些是违规求助? 4016969
关于积分的说明 12435954
捐赠科研通 3698871
什么是DOI,文献DOI怎么找? 2039823
邀请新用户注册赠送积分活动 1072572
科研通“疑难数据库(出版商)”最低求助积分说明 956270