Data-driven constitutive meta-modeling of nonlinear rheology via multifidelity neural networks

流变学 本构方程 非线性系统 材料科学 人工神经网络 粘弹性 机械 计算机科学 热力学 人工智能 有限元法 复合材料 物理 量子力学
作者
Milad Saadat,William H. Hartt,Norman J. Wagner,Safa Jamali
出处
期刊:Journal of Rheology [Society of Rheology]
卷期号:68 (5): 679-693
标识
DOI:10.1122/8.0000831
摘要

Predicting the response of complex fluids to different flow conditions has been the focal point of rheology and is generally done via constitutive relations. There are, nonetheless, scenarios in which not much is known from the material mathematically, while data collection from samples is elusive, resource-intensive, or both. In such cases, meta-modeling of observables using a parametric surrogate model called multi-fidelity neural networks (MFNNs) may obviate the constitutive equation development step by leveraging only a handful of high-fidelity (Hi-Fi) data collected from experiments (or high-resolution simulations) and an abundance of low-fidelity (Lo-Fi) data generated synthetically to compensate for Hi-Fi data scarcity. To this end, MFNNs are employed to meta-model the material responses of a thermo-viscoelastic (TVE) fluid, consumer product Johnson’s® Baby Shampoo, under four flow protocols: steady shear, step growth, oscillatory, and small/large amplitude oscillatory shear (S/LAOS). In addition, the time–temperature superposition (TTS) of the material response and MFNN predictions are explored. By applying simple linear regression (without induction of any constitutive equation) on log-spaced Hi-Fi data, a series of Lo-Fi data were generated and found sufficient to obtain accurate material response recovery in terms of either interpolation or extrapolation for all flow protocols except for S/LAOS. This insufficiency is resolved by informing the MFNN platform with a linear constitutive model (Maxwell viscoelastic) resulting in simultaneous interpolation and extrapolation capabilities in S/LAOS material response recovery. The roles of data volume, flow type, and deformation range are discussed in detail, providing a practical pathway to multifidelity meta-modeling of different complex fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Viva发布了新的文献求助10
1秒前
1秒前
XS_QI完成签到 ,获得积分10
4秒前
always完成签到 ,获得积分10
4秒前
跳跃鸽子发布了新的文献求助10
4秒前
7秒前
7秒前
小二郎应助笨笨采纳,获得10
8秒前
田所浩二完成签到 ,获得积分10
8秒前
晶生完成签到,获得积分10
9秒前
junru发布了新的文献求助10
10秒前
有魅力棉花糖完成签到,获得积分10
11秒前
眰恦完成签到 ,获得积分10
12秒前
12秒前
ikki发布了新的文献求助10
13秒前
13秒前
14秒前
文龙发布了新的文献求助200
14秒前
16秒前
内向的青荷完成签到,获得积分10
17秒前
Felix完成签到 ,获得积分10
17秒前
李健的粉丝团团长应助ikki采纳,获得10
18秒前
小吴同志发布了新的文献求助10
18秒前
小狐狸发布了新的文献求助10
18秒前
Makta发布了新的文献求助10
21秒前
zhangxiangwei发布了新的文献求助10
21秒前
Treasure发布了新的文献求助10
22秒前
Lyuiii发布了新的文献求助10
22秒前
笨笨发布了新的文献求助10
23秒前
23秒前
华仔应助小狐狸采纳,获得10
23秒前
24秒前
嘟嘟发布了新的文献求助10
24秒前
25秒前
Hey发布了新的文献求助10
25秒前
27秒前
无辜如音发布了新的文献求助20
27秒前
LWJ完成签到 ,获得积分10
28秒前
28秒前
小吴同志完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023