Data-driven constitutive meta-modeling of nonlinear rheology via multifidelity neural networks

流变学 本构方程 非线性系统 材料科学 人工神经网络 粘弹性 机械 计算机科学 热力学 人工智能 有限元法 复合材料 物理 量子力学
作者
Milad Saadat,William H. Hartt,Norman J. Wagner,Safa Jamali
出处
期刊:Journal of Rheology [American Institute of Physics]
卷期号:68 (5): 679-693
标识
DOI:10.1122/8.0000831
摘要

Predicting the response of complex fluids to different flow conditions has been the focal point of rheology and is generally done via constitutive relations. There are, nonetheless, scenarios in which not much is known from the material mathematically, while data collection from samples is elusive, resource-intensive, or both. In such cases, meta-modeling of observables using a parametric surrogate model called multi-fidelity neural networks (MFNNs) may obviate the constitutive equation development step by leveraging only a handful of high-fidelity (Hi-Fi) data collected from experiments (or high-resolution simulations) and an abundance of low-fidelity (Lo-Fi) data generated synthetically to compensate for Hi-Fi data scarcity. To this end, MFNNs are employed to meta-model the material responses of a thermo-viscoelastic (TVE) fluid, consumer product Johnson’s® Baby Shampoo, under four flow protocols: steady shear, step growth, oscillatory, and small/large amplitude oscillatory shear (S/LAOS). In addition, the time–temperature superposition (TTS) of the material response and MFNN predictions are explored. By applying simple linear regression (without induction of any constitutive equation) on log-spaced Hi-Fi data, a series of Lo-Fi data were generated and found sufficient to obtain accurate material response recovery in terms of either interpolation or extrapolation for all flow protocols except for S/LAOS. This insufficiency is resolved by informing the MFNN platform with a linear constitutive model (Maxwell viscoelastic) resulting in simultaneous interpolation and extrapolation capabilities in S/LAOS material response recovery. The roles of data volume, flow type, and deformation range are discussed in detail, providing a practical pathway to multifidelity meta-modeling of different complex fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷太清发布了新的文献求助10
1秒前
Hello应助苏格拉没有底采纳,获得10
2秒前
Chang发布了新的文献求助10
3秒前
Ode发布了新的文献求助10
4秒前
sd完成签到,获得积分10
4秒前
某某某发布了新的文献求助10
5秒前
允柠完成签到,获得积分10
6秒前
略略略发布了新的文献求助10
7秒前
想吃冰激凌么完成签到 ,获得积分20
7秒前
7秒前
8秒前
nako7575完成签到,获得积分10
9秒前
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
ZZQ完成签到,获得积分10
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
爆米花应助GT采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
12秒前
pokexuejiao发布了新的文献求助20
12秒前
YooLoo完成签到,获得积分10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
哈哈哈哈应助科研通管家采纳,获得10
12秒前
12秒前
哈哈哈哈应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425