材料科学
三元运算
吸收(声学)
微观结构
合金
微球
电子全息术
宽带
光电子学
化学工程
纳米技术
复合材料
光学
透射电子显微镜
工程类
程序设计语言
物理
计算机科学
作者
Mengqiu Huang,Bangxin Li,Yuetong Qian,Lei Wang,Huibin Zhang,Chendi Yang,Longjun Rao,Gang Zhou,Yukui Zhang,Renchao Che
标识
DOI:10.1007/s40820-024-01416-2
摘要
Abstract Broadband electromagnetic (EM) wave absorption materials play an important role in military stealth and health protection. Herein, metal–organic frameworks (MOFs)-derived magnetic-carbon CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres are fabricated, which exhibit flower-like nano–microstructure with tunable EM response capacity. Based on the MOFs-derived CoNi@C microsphere, the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance. In term of broadband absorption, the order of efficient absorption bandwidth (EAB) value is Mn > Fe = Zn > Cu in the CoNiM@C microspheres. Therefore, MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz (covering 12.2–18 GHz at 2.0 mm thickness). Besides, off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss. Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region, forming interfacial polarization. The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path, boosting the conductive loss. Equally importantly, magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors. This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
科研通智能强力驱动
Strongly Powered by AbleSci AI