Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer

结直肠癌 子宫内膜癌 人工智能 病态的 集成学习 集合预报 计算机科学 医学 机器学习 模式识别(心理学) 病理 内科学 癌症
作者
Ching‐Wei Wang,Tzu-Chien Liu,Po-Jen Lai,Hikam Muzakky,Yu‐Chi Wang,Mu-Hsien Yu,Chia-Hua Wu,Tai‐Kuang Chao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103372-103372 被引量:16
标识
DOI:10.1016/j.media.2024.103372
摘要

In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十月完成签到 ,获得积分10
2秒前
ExcitedFrog完成签到 ,获得积分10
2秒前
英姑应助不爱熬夜的波比采纳,获得10
3秒前
琦琦发布了新的文献求助10
6秒前
7秒前
7秒前
大模型应助yiyiyibbb采纳,获得10
7秒前
小张发布了新的文献求助10
13秒前
13秒前
15秒前
无花果应助琦琦采纳,获得10
16秒前
852应助琦琦采纳,获得10
16秒前
万有引力139应助琦琦采纳,获得10
16秒前
orixero应助琦琦采纳,获得10
16秒前
17秒前
端庄洪纲完成签到 ,获得积分10
19秒前
21秒前
xxx完成签到 ,获得积分10
21秒前
清风发布了新的文献求助10
22秒前
23秒前
ExcitedFrog发布了新的文献求助10
23秒前
NexusExplorer应助米热采纳,获得10
23秒前
24秒前
yangminmin完成签到,获得积分10
28秒前
28秒前
风清扬发布了新的文献求助10
28秒前
李爱国应助666采纳,获得10
29秒前
珊小宛发布了新的文献求助10
30秒前
31秒前
我是老大应助闪闪水云采纳,获得10
32秒前
蓝天发布了新的文献求助10
36秒前
xiaoshi完成签到,获得积分10
40秒前
风清扬发布了新的文献求助10
43秒前
热情礼貌一问三不知完成签到 ,获得积分10
44秒前
紫心完成签到 ,获得积分10
47秒前
清风完成签到,获得积分10
48秒前
爆米花应助vvei采纳,获得10
49秒前
坦率斑马完成签到,获得积分20
49秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383