Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field

极化(电化学) 偶极子 电磁场 材料科学 金属 纳米技术 近场和远场 光电子学 化学物理 物理 光学 化学 物理化学 量子力学 冶金
作者
Siyao Cheng,Daohu Sheng,Soumya Mukherjee,Wei Dong,Yuan‐Biao Huang,Rong Cao,Aming Xie,Roland A. Fischer,Weijin Li
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:23
标识
DOI:10.1038/s41467-024-53465-1
摘要

Surface modulation strategies have spurred great interest with regard to regulating the morphology, dispersion and flexible processability of materials. Unsurprisingly, customized modulation of surfaces is primed to offer a route to control their electronic functions. To regulate electromagnetic wave (EMW) absorption applications by surface engineering is an unmet challenge. Thanks to pyrolyzing surface-anchored metal-porphyrin, here we report on the surface modulation of four-nitrogen atoms-confined single metal site on a nitrogen-doped carbon layer (sM(N4)@NC, M = Ni, Co, Cu, Ni/Cu) (sM=single metal; NC= nitrogen-doped carbon layer) that registers electromagnetic wave absorption. Surface-anchored metal-porphyrins are afforded by attaching them onto the polypyrrole surface via a prototypical click reaction. Further, sM(N4)@NC is experimentally found to elicit an identical dipole polarization loss mechanism, overcoming the handicaps of conductivity loss, defects, and interfacial polarization loss among the current EMW absorber models. Importantly, sM(N4)@NC is found to exhibit an effective absorption bandwidth of 6.44 and reflection loss of −51.7 dB, preceding state-of-the-art carbon-based EMW absorbers. This study introduces a surface modulation strategy to design EMW absorbers based on single metal sites that enable fine-tunable and controlled absorption mechanism with atomistic precision. In this work, Cheng et al. report a unique electromagnetic wave (EMW) dipole-dominated loss model excluding other redundant EMW loss, opening an avenue for exploring future academic studies and industrially applicable EMW absorbing materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanjun发布了新的文献求助10
刚刚
1秒前
ss完成签到,获得积分20
1秒前
1秒前
九姑娘完成签到 ,获得积分10
2秒前
独特元蝶发布了新的文献求助10
2秒前
Hello应助ZHOU采纳,获得10
2秒前
传奇3应助nqbscxttdh采纳,获得10
3秒前
3秒前
CipherSage应助一个西藏采纳,获得10
4秒前
4秒前
铁塔凌云完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助freesialll采纳,获得10
6秒前
6秒前
背后寒烟发布了新的文献求助10
7秒前
7秒前
7秒前
wanci应助sanjun采纳,获得10
9秒前
9秒前
9秒前
烟花应助能干水杯采纳,获得10
10秒前
10秒前
big ben完成签到 ,获得积分0
11秒前
11秒前
情怀应助siriuslee99采纳,获得10
12秒前
雪意发布了新的文献求助10
12秒前
13秒前
小魏发布了新的文献求助10
13秒前
王柯予发布了新的文献求助10
14秒前
sera发布了新的文献求助10
14秒前
心碎的黄焖鸡完成签到 ,获得积分10
15秒前
小椰喃喃完成签到,获得积分10
15秒前
15秒前
平淡的绮彤完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
小马甲应助沉静胜采纳,获得10
17秒前
pihriyyy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858