Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field

极化(电化学) 偶极子 电磁场 材料科学 金属 纳米技术 近场和远场 光电子学 化学物理 物理 光学 化学 量子力学 物理化学 冶金
作者
Siyao Cheng,Daohu Sheng,Soumya Mukherjee,Wei Dong,Yuan‐Biao Huang,Rong Cao,Aming Xie,Roland A. Fischer,Weijin Li
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:23
标识
DOI:10.1038/s41467-024-53465-1
摘要

Surface modulation strategies have spurred great interest with regard to regulating the morphology, dispersion and flexible processability of materials. Unsurprisingly, customized modulation of surfaces is primed to offer a route to control their electronic functions. To regulate electromagnetic wave (EMW) absorption applications by surface engineering is an unmet challenge. Thanks to pyrolyzing surface-anchored metal-porphyrin, here we report on the surface modulation of four-nitrogen atoms-confined single metal site on a nitrogen-doped carbon layer (sM(N4)@NC, M = Ni, Co, Cu, Ni/Cu) (sM=single metal; NC= nitrogen-doped carbon layer) that registers electromagnetic wave absorption. Surface-anchored metal-porphyrins are afforded by attaching them onto the polypyrrole surface via a prototypical click reaction. Further, sM(N4)@NC is experimentally found to elicit an identical dipole polarization loss mechanism, overcoming the handicaps of conductivity loss, defects, and interfacial polarization loss among the current EMW absorber models. Importantly, sM(N4)@NC is found to exhibit an effective absorption bandwidth of 6.44 and reflection loss of −51.7 dB, preceding state-of-the-art carbon-based EMW absorbers. This study introduces a surface modulation strategy to design EMW absorbers based on single metal sites that enable fine-tunable and controlled absorption mechanism with atomistic precision. In this work, Cheng et al. report a unique electromagnetic wave (EMW) dipole-dominated loss model excluding other redundant EMW loss, opening an avenue for exploring future academic studies and industrially applicable EMW absorbing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助蛋堡采纳,获得10
2秒前
chndaz发布了新的文献求助10
3秒前
3秒前
锦瑟发布了新的文献求助10
4秒前
4秒前
枕安完成签到,获得积分10
4秒前
SciGPT应助276860采纳,获得10
5秒前
闪闪平灵完成签到,获得积分10
5秒前
6秒前
6秒前
realitz发布了新的文献求助10
7秒前
ScholarZmm完成签到,获得积分10
7秒前
tangxiaohui完成签到 ,获得积分10
7秒前
LANER完成签到 ,获得积分10
7秒前
kbkyvuy完成签到,获得积分10
7秒前
9秒前
缥缈天思完成签到,获得积分20
10秒前
Joy完成签到 ,获得积分10
10秒前
闪闪平灵发布了新的文献求助10
10秒前
安徒完成签到,获得积分10
10秒前
浮游应助火星上幻露采纳,获得10
10秒前
12秒前
吉以寒完成签到,获得积分10
12秒前
Orange应助小米采纳,获得10
12秒前
田様应助YY采纳,获得30
13秒前
Jaden完成签到,获得积分10
13秒前
13秒前
蛋堡发布了新的文献求助10
13秒前
14秒前
研友_VZG7GZ应助Pendulium采纳,获得10
19秒前
geoman完成签到,获得积分20
19秒前
19秒前
276860发布了新的文献求助10
19秒前
完美世界应助斯文的水卉采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
小小小完成签到 ,获得积分10
22秒前
orixero应助深情的新儿采纳,获得10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490086
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421486
捐赠科研通 4520617
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462269
关于科研通互助平台的介绍 1435171