Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field

极化(电化学) 偶极子 电磁场 材料科学 金属 纳米技术 近场和远场 光电子学 化学物理 物理 光学 化学 量子力学 物理化学 冶金
作者
Siyao Cheng,Daohu Sheng,Soumya Mukherjee,Wei Dong,Yuan‐Biao Huang,Rong Cao,Aming Xie,Roland A. Fischer,Weijin Li
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:23
标识
DOI:10.1038/s41467-024-53465-1
摘要

Surface modulation strategies have spurred great interest with regard to regulating the morphology, dispersion and flexible processability of materials. Unsurprisingly, customized modulation of surfaces is primed to offer a route to control their electronic functions. To regulate electromagnetic wave (EMW) absorption applications by surface engineering is an unmet challenge. Thanks to pyrolyzing surface-anchored metal-porphyrin, here we report on the surface modulation of four-nitrogen atoms-confined single metal site on a nitrogen-doped carbon layer (sM(N4)@NC, M = Ni, Co, Cu, Ni/Cu) (sM=single metal; NC= nitrogen-doped carbon layer) that registers electromagnetic wave absorption. Surface-anchored metal-porphyrins are afforded by attaching them onto the polypyrrole surface via a prototypical click reaction. Further, sM(N4)@NC is experimentally found to elicit an identical dipole polarization loss mechanism, overcoming the handicaps of conductivity loss, defects, and interfacial polarization loss among the current EMW absorber models. Importantly, sM(N4)@NC is found to exhibit an effective absorption bandwidth of 6.44 and reflection loss of −51.7 dB, preceding state-of-the-art carbon-based EMW absorbers. This study introduces a surface modulation strategy to design EMW absorbers based on single metal sites that enable fine-tunable and controlled absorption mechanism with atomistic precision. In this work, Cheng et al. report a unique electromagnetic wave (EMW) dipole-dominated loss model excluding other redundant EMW loss, opening an avenue for exploring future academic studies and industrially applicable EMW absorbing materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助fash采纳,获得10
刚刚
xuhandi发布了新的文献求助10
刚刚
小女子常戚戚完成签到,获得积分10
刚刚
椰子水给椰子水的求助进行了留言
1秒前
AGOUTI完成签到,获得积分10
1秒前
1秒前
2秒前
脑洞疼应助毛毛虫采纳,获得10
2秒前
2秒前
科研通AI6应助提拉米苏打采纳,获得10
2秒前
2秒前
乐观的幼珊完成签到,获得积分10
3秒前
3秒前
4秒前
科目三应助自觉的溪灵采纳,获得10
4秒前
5秒前
5秒前
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
勤恳雅莉应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
勤恳雅莉应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
面向阳光应助科研通管家采纳,获得20
6秒前
超级幼旋应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382