极化(电化学)
偶极子
电磁场
材料科学
金属
纳米技术
近场和远场
光电子学
化学物理
物理
光学
化学
物理化学
量子力学
冶金
作者
Siyao Cheng,Daohu Sheng,Soumya Mukherjee,Wei Dong,Yuan‐Biao Huang,Rong Cao,Aming Xie,Roland A. Fischer,Weijin Li
标识
DOI:10.1038/s41467-024-53465-1
摘要
Surface modulation strategies have spurred great interest with regard to regulating the morphology, dispersion and flexible processability of materials. Unsurprisingly, customized modulation of surfaces is primed to offer a route to control their electronic functions. To regulate electromagnetic wave (EMW) absorption applications by surface engineering is an unmet challenge. Thanks to pyrolyzing surface-anchored metal-porphyrin, here we report on the surface modulation of four-nitrogen atoms-confined single metal site on a nitrogen-doped carbon layer (sM(N4)@NC, M = Ni, Co, Cu, Ni/Cu) (sM=single metal; NC= nitrogen-doped carbon layer) that registers electromagnetic wave absorption. Surface-anchored metal-porphyrins are afforded by attaching them onto the polypyrrole surface via a prototypical click reaction. Further, sM(N4)@NC is experimentally found to elicit an identical dipole polarization loss mechanism, overcoming the handicaps of conductivity loss, defects, and interfacial polarization loss among the current EMW absorber models. Importantly, sM(N4)@NC is found to exhibit an effective absorption bandwidth of 6.44 and reflection loss of −51.7 dB, preceding state-of-the-art carbon-based EMW absorbers. This study introduces a surface modulation strategy to design EMW absorbers based on single metal sites that enable fine-tunable and controlled absorption mechanism with atomistic precision. In this work, Cheng et al. report a unique electromagnetic wave (EMW) dipole-dominated loss model excluding other redundant EMW loss, opening an avenue for exploring future academic studies and industrially applicable EMW absorbing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI