磁铁矿
地质学
矿化(土壤科学)
地球化学
磷灰石
火山
氧化铁
矿物学
化学工程
古生物学
土壤科学
工程类
土壤水分
作者
E. Cofré,Martín Reich,J. Tomás Ovalle,Gisella Palma,Fernando Barra,Artur P. Deditius,Adam C. Simon,Malcolm P. Roberts,Brian R. Jicha
出处
期刊:Economic geology and the bulletin of the Society of Economic Geologists
[Society of Economic Geologists]
日期:2024-07-01
摘要
Abstract Iron oxide-apatite (IOA) deposits, also known as magnetite-apatite or Kiruna-type deposits, are a major source of iron and potentially of rare earth elements and phosphorus. To date, the youngest representative of this group is the Pleistocene (~2 Ma) El Laco deposit, located in the Andean Cordillera of northern Chile. El Laco is considered a unique type of IOA deposit because of its young age and its volcanic-like features. Here we report the occurrence of similarly young IOA-type mineralization hosted within the Laguna del Maule Volcanic Complex, an unusually large and recent silicic volcanic system in the south-central Andes. We combined field observations and aerial drone images with detailed petrographic observations, electron microprobe analysis (EMPA), and 40Ar/39Ar dating to characterize the magnetite mineralization—named here “Vetas del Maule”—hosted within andesites of the now extinct La Zorra volcano (40Ar/39Ar plateau age of 1.013 ± 0.028 Ma). Five different styles of magnetite mineralization were identified: (1) massive magnetite, (2) pyroxene-actinolite-magnetite veins, (3) magnetite hydrothermal breccias, (4) disseminated magnetite, and (5) pyroxene-actinolite veins with minor magnetite. Field observations and aerial drone imaging, coupled with microtextural and microanalytical data, suggest a predominantly hydrothermal origin for the different types of mineralization. 40Ar/39Ar incremental heating of phlogopite associated with the magnetite mineralization yielded a plateau age of 873.6 ± 30.3 ka, confirming that the emplacement of Vetas del Maule postdated that of the host andesite rocks. Our data support the hypothesis that the magnetite mineralization formed in a volcanic setting from Fe-rich fluids exsolved from a magma at depth. Ultimately, Vetas del Maule provides evidence that volcanic-related IOA mineralization may be more common than previously thought, opening new opportunities of research and exploration for this ore deposit type in active volcanic arcs.
科研通智能强力驱动
Strongly Powered by AbleSci AI