Modeling offensive content detection for TikTok

无礼的 内容(测量理论) 计算机科学 数学 运筹学 数学分析
作者
Kasper Cools,Gideon Mailette de Buy Wenniger,Clara Maathuis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.16857
摘要

The advent of social media transformed interpersonal communication and information consumption processes. This digital landscape accommodates user intentions, also resulting in an increase of offensive language and harmful behavior. Concurrently, social media platforms collect vast datasets comprising user-generated content and behavioral information. These datasets are instrumental for platforms deploying machine learning and data-driven strategies, facilitating customer insights and countermeasures against social manipulation mechanisms like disinformation and offensive content. Nevertheless, the availability of such datasets, along with the application of various machine learning techniques, to researchers and practitioners, for specific social media platforms regarding particular events, is limited. In particular for TikTok, which offers unique tools for personalized content creation and sharing, the existing body of knowledge would benefit from having diverse comprehensive datasets and associated data analytics solutions on offensive content. While efforts from social media platforms, research, and practitioner communities are seen on this behalf, such content continues to proliferate. This translates to an essential need to make datasets publicly available and build corresponding intelligent solutions. On this behalf, this research undertakes the collection and analysis of TikTok data containing offensive content, building a series of machine learning and deep learning models for offensive content detection. This is done aiming at answering the following research question: "How to develop a series of computational models to detect offensive content on TikTok?". To this end, a Data Science methodological approach is considered, 120.423 TikTok comments are collected, and on a balanced, binary classification approach, F1 score performance results of 0.863 is obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruirui发布了新的文献求助10
2秒前
张满月迷弟完成签到,获得积分10
2秒前
星宿陨完成签到,获得积分10
2秒前
Billy应助美好斓采纳,获得30
3秒前
科研通AI2S应助Hongni采纳,获得30
4秒前
6秒前
陌小千完成签到 ,获得积分10
7秒前
天阳完成签到,获得积分10
8秒前
jia关闭了jia文献求助
9秒前
ruirui完成签到,获得积分10
10秒前
mz完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
善学以致用应助陈橙橙采纳,获得10
16秒前
云端步伐完成签到,获得积分20
23秒前
25秒前
wwwwww完成签到,获得积分10
26秒前
小蘑菇应助DQY采纳,获得10
27秒前
白桃完成签到 ,获得积分10
29秒前
刘大海发布了新的文献求助10
30秒前
星川完成签到,获得积分10
32秒前
xpy发布了新的文献求助10
33秒前
33秒前
qiqiqiqiqi完成签到 ,获得积分10
33秒前
34秒前
情怀应助科研通管家采纳,获得10
36秒前
pluto应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
37秒前
lingua给lingua的求助进行了留言
37秒前
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
自然完成签到,获得积分10
37秒前
lookspace完成签到,获得积分10
37秒前
37秒前
自觉的时光完成签到,获得积分10
38秒前
hh发布了新的文献求助10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578