计算机科学
任务(项目管理)
GSM演进的增强数据速率
人机交互
边缘计算
语义计算
万维网
人工智能
语义网
系统工程
工程类
作者
Xuyang Chen,Qu Luo,Gaojie Chen,Daquan Feng,Yao Sun
出处
期刊:Cornell University - arXiv
日期:2024-06-28
标识
DOI:10.48550/arxiv.2407.11018
摘要
Mobile edge computing (MEC) provides low-latency offloading solutions for computationally intensive tasks, effectively improving the computing efficiency and battery life of mobile devices. However, for data-intensive tasks or scenarios with limited uplink bandwidth, network congestion might occur due to massive simultaneous offloading nodes, increasing transmission latency and affecting task performance. In this paper, we propose a semantic-aware multi-modal task offloading framework to address the challenges posed by limited uplink bandwidth. By introducing a semantic extraction factor, we balance the relationship among transmission latency, computation energy consumption, and task performance. To measure the offloading performance of multi-modal tasks, we design a unified and fair quality of experience (QoE) metric that includes execution latency, energy consumption, and task performance. Lastly, we formulate the optimization problem as a Markov decision process (MDP) and exploit the multi-agent proximal policy optimization (MAPPO) reinforcement learning algorithm to jointly optimize the semantic extraction factor, communication resources, and computing resources to maximize overall QoE. Experimental results show that the proposed method achieves a reduction in execution latency and energy consumption of 18.1% and 12.9%, respectively compared with the semantic-unaware approach. Moreover, the proposed approach can be easily extended to models with different user preferences.
科研通智能强力驱动
Strongly Powered by AbleSci AI