色域
材料科学
原位
纳米技术
化学工程
光电子学
光学
有机化学
物理
工程类
化学
作者
V. Naresh,Jacopo Leo,Nohyun Lee,Sanghee Nah,Lih Y. Lin
标识
DOI:10.1002/adfm.202413320
摘要
Abstract This study presents the Br‐rich in situ synthesis of blue‐emitting 2D CsPbBr 3 nanoplatelets (NPLs) with various Br/Pb ratios using ZnBr 2 as a Br precursor to enhance Br ion adsorption significantly. This leads to effective passivation of surface defects, particularly Pb−Br bonds, by increasing the positive charge density around Pb atoms, thus creating a stable bonding environment and reducing defect formation. Consequently, the photoluminescence quantum yield (PLQY) improves from 31.15% for a Br/Pb ratio of 2 to 87.2% for a ratio of 6. NPLs with a Br/Pb ratio of 6 also exhibit longer lifetimes (16.69 ns) and slower bleach recovery dynamics, indicating fewer non‐radiative recombination pathways and effective exciton dynamics. Additionally, NPLs with the Br/Pb ratio of 6 demonstrated better thermal stability, with an activation energy of 124.3 meV, indicating stronger exciton binding. These NPLs also exhibited enhanced stability, with UV tolerance at 43.9% and water resistance at 23.8%, making them suitable for displays and lighting. Furthermore, Br‐passivated CsPbBr 3 NPLs are used as blue emitters in prototype white LEDs, achieving a wide color gamut, 126.6% of the National Television Standards Committee and 94.5% of Rec. 2020, demonstrating their potential for high‐quality lighting and advanced display technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI