Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study

重症监护室 人工智能 特征(语言学) 一般化 计算机科学 机器学习 重症监护 数据挖掘 集合(抽象数据类型) 医学 重症监护医学 数学 数学分析 哲学 语言学 程序设计语言
作者
Yun Kwan Kim,Won-Doo Seo,Sun Jung Lee,Ja Hyung Koo,Gyung Chul Kim,Hee Seok Song,Minji Lee
出处
期刊:Journal of Medical Internet Research 卷期号:26: e62890-e62890 被引量:2
标识
DOI:10.2196/62890
摘要

Background Cardiac arrest (CA) is one of the leading causes of death among patients in the intensive care unit (ICU). Although many CA prediction models with high sensitivity have been developed to anticipate CA, their practical application has been challenging due to a lack of generalization and validation. Additionally, the heterogeneity among patients in different ICU subtypes has not been adequately addressed. Objective This study aims to propose a clinically interpretable ensemble approach for the timely and accurate prediction of CA within 24 hours, regardless of patient heterogeneity, including variations across different populations and ICU subtypes. Additionally, we conducted patient-independent evaluations to emphasize the model’s generalization performance and analyzed interpretable results that can be readily adopted by clinicians in real-time. Methods Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and the eICU-Collaborative Research Database (eICU-CRD). To address the problem of underperformance, we constructed our framework using feature sets based on vital signs, multiresolution statistical analysis, and the Gini index, with a 12-hour window to capture the unique characteristics of CA. We extracted 3 types of features from each database to compare the performance of CA prediction between high-risk patient groups from MIMIC-IV and patients without CA from eICU-CRD. After feature extraction, we developed a tabular network (TabNet) model using feature screening with cost-sensitive learning. To assess real-time CA prediction performance, we used 10-fold leave-one-patient-out cross-validation and a cross–data set method. We evaluated MIMIC-IV and eICU-CRD across different cohort populations and subtypes of ICU within each database. Finally, external validation using the eICU-CRD and MIMIC-IV databases was conducted to assess the model’s generalization ability. The decision mask of the proposed method was used to capture the interpretability of the model. Results The proposed method outperformed conventional approaches across different cohort populations in both MIMIC-IV and eICU-CRD. Additionally, it achieved higher accuracy than baseline models for various ICU subtypes within both databases. The interpretable prediction results can enhance clinicians’ understanding of CA prediction by serving as a statistical comparison between non-CA and CA groups. Next, we tested the eICU-CRD and MIMIC-IV data sets using models trained on MIMIC-IV and eICU-CRD, respectively, to evaluate generalization ability. The results demonstrated superior performance compared with baseline models. Conclusions Our novel framework for learning unique features provides stable predictive power across different ICU environments. Most of the interpretable global information reveals statistical differences between CA and non-CA groups, demonstrating its utility as an indicator for clinical decisions. Consequently, the proposed CA prediction system is a clinically validated algorithm that enables clinicians to intervene early based on CA prediction information and can be applied to clinical trials in digital health.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闷声发完成签到,获得积分10
刚刚
1秒前
CodeCraft应助眼睛大的问儿采纳,获得10
1秒前
飘逸的达完成签到,获得积分10
2秒前
2秒前
ying完成签到 ,获得积分10
2秒前
霸体发布了新的文献求助10
3秒前
3秒前
4秒前
Gauss应助渡梦不渡身采纳,获得30
4秒前
Lucas应助gdt采纳,获得10
4秒前
今后应助有机小虾米采纳,获得10
5秒前
皓轩发布了新的文献求助10
5秒前
南风应助zrw采纳,获得10
5秒前
英俊的铭应助LGJ采纳,获得10
6秒前
友好驳发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
飘逸的达发布了新的文献求助10
9秒前
LuoJiajun发布了新的文献求助10
9秒前
12w发布了新的文献求助10
9秒前
伍梦桃发布了新的文献求助10
9秒前
9秒前
controln完成签到 ,获得积分10
10秒前
勤劳志泽发布了新的文献求助10
10秒前
Owen应助赖林采纳,获得10
11秒前
11秒前
眯眯眼的念寒完成签到,获得积分20
12秒前
12秒前
啊哈发布了新的文献求助10
12秒前
huhuhuhuxuan发布了新的文献求助20
12秒前
13秒前
JamesPei应助bsdd采纳,获得10
13秒前
14秒前
Owen应助东篱陶渊明采纳,获得10
14秒前
14秒前
初晴发布了新的文献求助10
14秒前
默默发布了新的文献求助10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410884
求助须知:如何正确求助?哪些是违规求助? 3014427
关于积分的说明 8863234
捐赠科研通 2701774
什么是DOI,文献DOI怎么找? 1481273
科研通“疑难数据库(出版商)”最低求助积分说明 684760
邀请新用户注册赠送积分活动 679281