亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CRML-Net: Cross-Modal Reasoning and Multi-Task Learning Network for tooth image segmentation

人工智能 计算机科学 任务(项目管理) 情态动词 分割 图像(数学) 网(多面体) 计算机视觉 数学 工程类 几何学 化学 高分子化学 系统工程
作者
Yingda Lyu,Zhehao Liu,Yingxin Zhang,Haipeng Chen,Zongyu Xu
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:: 104138-104138
标识
DOI:10.1016/j.cviu.2024.104138
摘要

Data from a single modality may suffer from noise, low contrast, or other imaging limitations that affect the model's accuracy. Furthermore, due to the limited amount of data, most models trained on single-modality data tend to overfit the training set and perform poorly on out-of-domain data. Therefore, in this paper, we propose a network named Cross-Modal Reasoning and Multi-Task Learning Network (CRML-Net), which combines cross-modal reasoning and multi-task learning, aiming to leverage the complementary information between different modalities and tasks to enhance the model's generalization ability and accuracy. Specifically, CRML-Net consists of two stages. In the first stage, our network extracts a new morphological information modality from the original image and then performs cross-modal fusion with the original modality image, aiming to leverage the morphological information to enhance the model's robustness to out-of-domain datasets. In the second stage, based on the output of the previous stage, we introduce a multi-task learning mechanism, aiming to improve the model's performance on unseen data by sharing surface detail information from auxiliary tasks. We validated our method on a publicly available tooth cone beam computed tomography dataset. Our evaluation demonstrates that our method outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
25秒前
27秒前
dcm发布了新的文献求助10
29秒前
32秒前
量子星尘发布了新的文献求助10
47秒前
juan完成签到 ,获得积分10
1分钟前
1分钟前
dandan完成签到,获得积分10
2分钟前
2分钟前
puzhongjiMiQ发布了新的文献求助10
2分钟前
FSYHantis发布了新的文献求助10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
PeterLin完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
万能图书馆应助BinBlues采纳,获得10
3分钟前
3分钟前
FSYHantis完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Re完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
章鱼完成签到,获得积分10
6分钟前
6分钟前
puzhongjiMiQ发布了新的文献求助10
6分钟前
7分钟前
7分钟前
淡淡醉波wuliao完成签到 ,获得积分0
7分钟前
量子星尘发布了新的文献求助10
7分钟前
hfguwn完成签到,获得积分10
8分钟前
8分钟前
排骨大王完成签到,获得积分10
8分钟前
wuju发布了新的文献求助10
8分钟前
8分钟前
8分钟前
笨笨山芙完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612195
求助须知:如何正确求助?哪些是违规求助? 4017475
关于积分的说明 12436362
捐赠科研通 3699564
什么是DOI,文献DOI怎么找? 2040183
邀请新用户注册赠送积分活动 1073023
科研通“疑难数据库(出版商)”最低求助积分说明 956705