Online Fault Diagnosis of Harmonic Drives Using Semisupervised Contrastive Graph Generative Network via Multimodal Data

计算机科学 人工智能 图形 聚类分析 模式识别(心理学) 编码器 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Guo Yang,Hui Tao,Tingting Yu,Ruxu Du,Yong Zhong
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 3055-3063 被引量:6
标识
DOI:10.1109/tie.2023.3265056
摘要

Harmonic drive is a core component of the industrial robot, its failure will directly affect the robot's performance. Moreover, as the harmonic drive often works with excessive speed and load, it may fail unpredictably. Therefore, online fault diagnosis is quite significant. In this article, we propose an online intelligent fault diagnosis method for harmonic drives using a semisupervised contrastive graph generative network (SCGGN) via multimodal data. First, multimodal data (including motor current signals and encoder signals) of the harmonic drive are collected online. The Euclidean distance is used to analyze the similarity of the data in the frequency domain. Second, multiple graph convolution network and hierarchical graph convolution network are used to obtain complementary fault features from local and global views, respectively. Third, the contrastive learning network is constructed to obtain high-level information through unsupervised learning and perform data clustering to obtain the multiclassification output. Finally, a combination of learnable loss functions is used to optimize the SCGGN. The presented method is tested on an industrial robot. The experimental results show that the method can achieve 86.15% accuracy with 8% of the labeled training data and 79.9% accuracy with only 0.5% of the labeled training data, which are superior to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助shenyanlei采纳,获得10
刚刚
糟糕的雪柳完成签到,获得积分20
刚刚
朴素的啤酒完成签到,获得积分10
1秒前
1秒前
1秒前
zhjwu完成签到,获得积分10
1秒前
1秒前
1秒前
LO7pM2完成签到,获得积分10
2秒前
hh完成签到,获得积分10
2秒前
茄茄女士完成签到 ,获得积分10
2秒前
今后应助桦桦采纳,获得10
2秒前
十柒完成签到 ,获得积分10
2秒前
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
甜蜜冷风完成签到,获得积分10
3秒前
郭倩完成签到,获得积分10
4秒前
小王发布了新的文献求助10
5秒前
5秒前
5秒前
清脆宛筠发布了新的文献求助10
5秒前
5秒前
zty完成签到,获得积分10
5秒前
5秒前
wushengdeyu完成签到,获得积分10
6秒前
6秒前
飞儿完成签到,获得积分10
6秒前
hongjing发布了新的文献求助10
6秒前
留胡子的妙松完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助健忘的翠柏采纳,获得10
7秒前
7秒前
小梦完成签到,获得积分10
8秒前
大白完成签到,获得积分10
8秒前
华仔应助神勇难胜采纳,获得10
8秒前
xxbear77发布了新的文献求助10
8秒前
SciGPT应助yhx采纳,获得10
9秒前
研友_LOKqmL发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067949
求助须知:如何正确求助?哪些是违规求助? 4289689
关于积分的说明 13364572
捐赠科研通 4109436
什么是DOI,文献DOI怎么找? 2250320
邀请新用户注册赠送积分活动 1255685
关于科研通互助平台的介绍 1188198