Online Fault Diagnosis of Harmonic Drives Using Semisupervised Contrastive Graph Generative Network via Multimodal Data

计算机科学 人工智能 图形 聚类分析 模式识别(心理学) 编码器 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Guo Yang,Hui Tao,Tingting Yu,Ruxu Du,Yong Zhong
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 3055-3063 被引量:6
标识
DOI:10.1109/tie.2023.3265056
摘要

Harmonic drive is a core component of the industrial robot, its failure will directly affect the robot's performance. Moreover, as the harmonic drive often works with excessive speed and load, it may fail unpredictably. Therefore, online fault diagnosis is quite significant. In this article, we propose an online intelligent fault diagnosis method for harmonic drives using a semisupervised contrastive graph generative network (SCGGN) via multimodal data. First, multimodal data (including motor current signals and encoder signals) of the harmonic drive are collected online. The Euclidean distance is used to analyze the similarity of the data in the frequency domain. Second, multiple graph convolution network and hierarchical graph convolution network are used to obtain complementary fault features from local and global views, respectively. Third, the contrastive learning network is constructed to obtain high-level information through unsupervised learning and perform data clustering to obtain the multiclassification output. Finally, a combination of learnable loss functions is used to optimize the SCGGN. The presented method is tested on an industrial robot. The experimental results show that the method can achieve 86.15% accuracy with 8% of the labeled training data and 79.9% accuracy with only 0.5% of the labeled training data, which are superior to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wyg512发布了新的文献求助10
刚刚
Linxinxin发布了新的文献求助30
1秒前
1秒前
慕青应助俭朴的乐巧采纳,获得10
1秒前
多啦啦发布了新的文献求助10
2秒前
2秒前
无情草莓发布了新的文献求助10
2秒前
祖f完成签到,获得积分10
3秒前
调皮的笑阳完成签到 ,获得积分10
3秒前
3秒前
困死了关注了科研通微信公众号
3秒前
孔鹏飞发布了新的文献求助10
4秒前
4秒前
青藤发布了新的文献求助10
4秒前
4秒前
西瓜公主发布了新的文献求助10
4秒前
baiyang99发布了新的文献求助10
4秒前
wxyshare应助Culaccino采纳,获得10
5秒前
lj发布了新的文献求助10
5秒前
5秒前
Belinda发布了新的文献求助10
5秒前
6秒前
香蕉觅云应助卡卡罗特采纳,获得10
6秒前
长情飞丹完成签到,获得积分10
6秒前
桐桐应助哈哈哈采纳,获得10
7秒前
7秒前
乐乐应助回到过去1207采纳,获得10
7秒前
坚定的海露完成签到,获得积分10
7秒前
8秒前
传奇3应助林二车娜姆采纳,获得10
8秒前
chao完成签到,获得积分10
8秒前
9秒前
9秒前
开心的寄灵完成签到 ,获得积分10
9秒前
缥缈伟宸完成签到,获得积分10
9秒前
9秒前
dyy123发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330