Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142949-142949 被引量:60
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mmy完成签到 ,获得积分10
3秒前
俏皮的老三完成签到 ,获得积分10
4秒前
上下完成签到 ,获得积分10
5秒前
风月难安完成签到,获得积分10
5秒前
无道则愚完成签到 ,获得积分10
6秒前
Qinghua完成签到,获得积分10
6秒前
徐慕源完成签到,获得积分10
7秒前
求助人员发布了新的文献求助10
7秒前
文与武完成签到 ,获得积分10
8秒前
晓风完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
10秒前
华仔应助科研通管家采纳,获得20
11秒前
风月难安发布了新的文献求助30
12秒前
浮光完成签到,获得积分10
12秒前
与一完成签到 ,获得积分10
16秒前
yin完成签到,获得积分10
16秒前
缥缈的闭月完成签到,获得积分10
17秒前
17秒前
荔枝吖完成签到,获得积分10
20秒前
魁梧的衫完成签到 ,获得积分10
22秒前
ethan完成签到,获得积分10
23秒前
23秒前
开朗的哈密瓜完成签到 ,获得积分10
25秒前
tttx完成签到,获得积分10
25秒前
26秒前
26秒前
典雅的纸飞机完成签到 ,获得积分10
27秒前
靓丽的悒完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
unowhoiam完成签到 ,获得积分10
29秒前
开心完成签到 ,获得积分10
30秒前
ZJU发布了新的文献求助10
32秒前
小张完成签到 ,获得积分10
32秒前
ru完成签到 ,获得积分10
35秒前
芭蕾恰恰舞完成签到,获得积分10
36秒前
可爱沛蓝完成签到 ,获得积分10
37秒前
务实海豚完成签到,获得积分10
38秒前
yanmh完成签到,获得积分10
41秒前
云锋发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086