Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:465: 142949-142949 被引量:36
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iko完成签到,获得积分10
刚刚
刚刚
1107任务报告完成签到,获得积分10
1秒前
penguin发布了新的文献求助10
2秒前
无聊的不愁完成签到,获得积分10
2秒前
xbo完成签到,获得积分10
3秒前
3秒前
Jackcaosky完成签到 ,获得积分10
4秒前
小羊完成签到 ,获得积分10
4秒前
小二郎应助living笑白采纳,获得10
4秒前
朴素的清完成签到,获得积分10
5秒前
南方姑娘发布了新的文献求助10
5秒前
joossss发布了新的文献求助10
7秒前
甜美的芷完成签到,获得积分10
7秒前
7秒前
echo完成签到,获得积分10
7秒前
xiaoxiao发布了新的文献求助10
8秒前
yorkin完成签到 ,获得积分10
8秒前
朴素的清发布了新的文献求助10
8秒前
救驾来迟完成签到,获得积分10
9秒前
深情安青应助anhydrous采纳,获得10
10秒前
RK发布了新的文献求助10
11秒前
甜美的芷发布了新的文献求助10
11秒前
白日梦完成签到 ,获得积分20
12秒前
刘亚茹发布了新的文献求助10
12秒前
复杂的板凳完成签到,获得积分10
12秒前
13秒前
13秒前
缓慢的涵瑶关注了科研通微信公众号
13秒前
仁清发布了新的文献求助10
14秒前
赘婿应助科研狗采纳,获得10
14秒前
群德之善完成签到,获得积分10
15秒前
16秒前
新司机发布了新的文献求助10
17秒前
Xzx1995完成签到 ,获得积分10
17秒前
星辰大海应助刘亚茹采纳,获得10
17秒前
俟天晴完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451