Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142949-142949 被引量:18
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭a发布了新的文献求助10
刚刚
盼盼完成签到,获得积分10
1秒前
王哪跑12发布了新的文献求助10
1秒前
wuzhihong完成签到,获得积分10
1秒前
浅怠发布了新的文献求助10
2秒前
3秒前
4秒前
1128完成签到,获得积分10
4秒前
yx发布了新的文献求助10
5秒前
不安青牛举报苏帅求助涉嫌违规
6秒前
研友_Raven发布了新的文献求助20
6秒前
8秒前
qiyun完成签到,获得积分10
9秒前
9秒前
mxxmc完成签到,获得积分20
9秒前
枯叶蝶发布了新的文献求助10
9秒前
书枫哥哥发布了新的文献求助10
10秒前
11秒前
嘿嘿嘿发布了新的文献求助10
12秒前
NexusExplorer应助HUI采纳,获得10
12秒前
礼堂的丁真完成签到 ,获得积分10
13秒前
Lucky发布了新的文献求助10
13秒前
13秒前
直率心锁发布了新的文献求助10
15秒前
15秒前
狂野的元容完成签到,获得积分10
17秒前
小江关注了科研通微信公众号
19秒前
nxxxxxxxxxx完成签到,获得积分10
20秒前
仁爱的汉堡完成签到,获得积分10
22秒前
茉莉奶绿完成签到,获得积分10
22秒前
hqr3000完成签到,获得积分10
22秒前
23秒前
24秒前
微笑藏鸟完成签到 ,获得积分10
24秒前
zhffdss完成签到,获得积分20
24秒前
24秒前
华仔应助有魅力的电脑采纳,获得10
25秒前
王kk完成签到 ,获得积分10
26秒前
27秒前
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328927
求助须知:如何正确求助?哪些是违规求助? 2958914
关于积分的说明 8592778
捐赠科研通 2637342
什么是DOI,文献DOI怎么找? 1443446
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656040