亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning

聚酰亚胺 材料科学 玻璃化转变 计算机科学 人工智能 机器学习 极限抗拉强度 聚合物 机械工程 纳米技术 复合材料 工程类 图层(电子)
作者
Lei Tao,Jinlong He,Nuwayo Eric Munyaneza,Vikas Varshney,Wei Chen,Guoliang Liu,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:465: 142949-142949 被引量:53
标识
DOI:10.1016/j.cej.2023.142949
摘要

Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助倪妮采纳,获得10
7秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
16秒前
从容芮给嘉心糖的求助进行了留言
39秒前
49秒前
53秒前
54秒前
drtianyunhong完成签到,获得积分10
1分钟前
Krim完成签到 ,获得积分0
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
YifanWang完成签到,获得积分0
2分钟前
科研通AI5应助倪妮采纳,获得10
2分钟前
2分钟前
倪妮发布了新的文献求助10
2分钟前
从容芮完成签到,获得积分0
3分钟前
4分钟前
4分钟前
Hong发布了新的文献求助10
4分钟前
大模型应助小冯看不懂采纳,获得10
4分钟前
4分钟前
4分钟前
ccm应助Hong采纳,获得10
4分钟前
MCRing完成签到 ,获得积分10
5分钟前
6分钟前
xiliyusheng发布了新的文献求助10
6分钟前
情怀应助xiliyusheng采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
Suraim完成签到,获得积分10
6分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
里昂义务发布了新的文献求助30
8分钟前
kuoping完成签到,获得积分0
8分钟前
drirshad完成签到,获得积分10
9分钟前
9分钟前
Young发布了新的文献求助10
9分钟前
Young完成签到,获得积分10
9分钟前
lucky完成签到 ,获得积分10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127469
求助须知:如何正确求助?哪些是违规求助? 4330489
关于积分的说明 13493380
捐赠科研通 4166123
什么是DOI,文献DOI怎么找? 2283772
邀请新用户注册赠送积分活动 1284800
关于科研通互助平台的介绍 1224844