Automated machine learning-based prediction of microplastics induced impacts on methane production in anaerobic digestion

微塑料 厌氧消化 甲烷 环境科学 生化工程 预测建模 废水 生产(经济) 沼气 机器学习 环境工程 计算机科学 环境化学 化学 废物管理 生态学 工程类 生物 宏观经济学 经济
作者
Runze Xu,Jiashun Cao,Ye Tian,Suna Wang,Jingyang Luo,Bing‐Jie Ni,Fang Fang
出处
期刊:Water Research [Elsevier BV]
卷期号:223: 118975-118975 被引量:30
标识
DOI:10.1016/j.watres.2022.118975
摘要

Microplastics as emerging pollutants have been heavily accumulated in the waste activated sludge (WAS) during biological wastewater treatment, which showed significantly diverse impacts on the subsequent anaerobic sludge digestion for methane production. However, a robust modeling approach for predicting and unveiling the complex effects of accumulated microplastics within WAS on methane production is still missing. In this study, four automated machine learning (AutoML) approach was applied to model the effects of microplastics on anaerobic digestion processes, and integrated explainable analysis was explored to reveal the relationships between key variables (e.g., concentration, type, and size of microplastics) and methane production. The results showed that the gradient boosting machine had better prediction performance (mean squared error (MSE) = 17.0) than common neural networks models (MSE = 58.0), demonstrating that the AutoML algorithms succeeded in predicting the methane production and could select the best machine learning model without human intervention. Explainable analysis results indicated that the variable of microplastic types was more important than the variable of microplastic diameter and concentration. The existence of polystyrene was associated with higher methane production, whereas increasing microplastic diameter and concentration both inhibited methane production. This work also provided a novel modeling approach for comprehensively understanding the complex effects of microplastics on methane production, which revealed the dependence relationships between methane production and key variables and may be served as a reference for optimizing operational adjustments in anaerobic digestion processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助卷卷采纳,获得30
1秒前
3秒前
孙二二发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
lljken发布了新的文献求助10
6秒前
6秒前
佳AOAOAO发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助ABC采纳,获得10
8秒前
9秒前
xiaoting完成签到,获得积分20
9秒前
cfplhys发布了新的文献求助10
10秒前
歇儿哒哒完成签到,获得积分10
10秒前
研友_VZG7GZ应助lv采纳,获得10
10秒前
hb发布了新的文献求助10
12秒前
12秒前
九头鬼方发布了新的文献求助30
13秒前
科研通AI2S应助风华正茂采纳,获得10
14秒前
zqz发布了新的文献求助10
15秒前
16秒前
SciGPT应助踏雪飞鸿采纳,获得10
16秒前
Liiw完成签到,获得积分10
16秒前
大个应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI5应助lljken采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得50
18秒前
山花浪漫应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得150
19秒前
田様应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901