An Efficient Infill Well Placement Optimization Approach for Extra-Low Permeability Reservoir

填充 储层模拟 数学优化 磁导率 计算机科学 石油工程 工程类 土木工程 数学 遗传学 生物
作者
Qinyang Dai,Liming Zhang,Kai Zhang,Guodong Chen,Xiaopeng Ma,Jian Wang,Huaqing Zhang,Yan Xia,Piyang Liu,Yongfei Yang
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:18
标识
DOI:10.1115/1.4055198
摘要

Abstract The objective of infill well placement optimization is to determine the optimal well locations that maximize the net present value (NPV). The most common method of well infilling in oil field is based on the engineer’s knowledge, which is risky. Additionally, numerous optimization techniques have been proposed to address the issues. However, locating the global optimum in a large-scale practical reservoir model is computationally expensive, even more so in the realistic extra-low permeability reservoir, where fractures are generated and underground conditions are complex. Thus, both determining well locations solely through human experience and obtaining them through traditional optimization methods have disadvantages in actual engineering applications. In this paper, we propose an infill well optimization strategy based on the divide-and-conquer principle that divides the large-scale realistic reservoir model into several types of small-scale conceptual models using human knowledge and then uses the surrogate-assisted evolutionary algorithm to obtain the infill well laws for this reservoir. The diamond inversed nine-spot well patterns are studied and summarized to provide the optimal infill well placement laws for extra-low permeability reservoirs. Additionally, the laws are implemented in W-77 actual reservoir and the oil recovery has an equivalent increase of 2.205%. The results demonstrate the proposed method’s strong engineering potential and application value, as it combines the benefits of human experience and evolutionary algorithms to determine the optimal infill well placement in a realistic extra-low permeability reservoir development scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
精神世界完成签到,获得积分10
1秒前
1秒前
上官若男应助叶长安采纳,获得10
1秒前
ding应助自然的菠萝采纳,获得10
1秒前
zhang发布了新的文献求助10
2秒前
candleshi完成签到,获得积分10
2秒前
Xu发布了新的文献求助10
2秒前
freebird应助会飞的鱼采纳,获得10
2秒前
3秒前
跳跃飞瑶发布了新的文献求助10
3秒前
3秒前
3秒前
温暖的颜演完成签到 ,获得积分10
4秒前
Hello应助Mininine采纳,获得10
4秒前
4秒前
自觉的香彤完成签到,获得积分10
4秒前
5秒前
Orange应助达奚多思采纳,获得10
5秒前
5秒前
贾硕士发布了新的文献求助10
5秒前
太阳能之子完成签到,获得积分10
5秒前
ZCM关闭了ZCM文献求助
5秒前
6秒前
繁星完成签到,获得积分10
6秒前
一颗苹果完成签到 ,获得积分10
6秒前
超帅的遥发布了新的文献求助10
6秒前
生信好难完成签到,获得积分10
7秒前
7秒前
小苏打完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Sumengyan发布了新的文献求助10
9秒前
Lucas应助自觉的香彤采纳,获得10
10秒前
10秒前
10秒前
XIAONIE25发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285