An Efficient Infill Well Placement Optimization Approach for Extra-Low Permeability Reservoir

填充 储层模拟 数学优化 磁导率 计算机科学 石油工程 工程类 土木工程 数学 遗传学 生物
作者
Qinyang Dai,Liming Zhang,Kai Zhang,Guodong Chen,Xiaopeng Ma,Jian Wang,Huaqing Zhang,Yan Xia,Piyang Liu,Yongfei Yang
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:145 (3) 被引量:18
标识
DOI:10.1115/1.4055198
摘要

Abstract The objective of infill well placement optimization is to determine the optimal well locations that maximize the net present value (NPV). The most common method of well infilling in oil field is based on the engineer’s knowledge, which is risky. Additionally, numerous optimization techniques have been proposed to address the issues. However, locating the global optimum in a large-scale practical reservoir model is computationally expensive, even more so in the realistic extra-low permeability reservoir, where fractures are generated and underground conditions are complex. Thus, both determining well locations solely through human experience and obtaining them through traditional optimization methods have disadvantages in actual engineering applications. In this paper, we propose an infill well optimization strategy based on the divide-and-conquer principle that divides the large-scale realistic reservoir model into several types of small-scale conceptual models using human knowledge and then uses the surrogate-assisted evolutionary algorithm to obtain the infill well laws for this reservoir. The diamond inversed nine-spot well patterns are studied and summarized to provide the optimal infill well placement laws for extra-low permeability reservoirs. Additionally, the laws are implemented in W-77 actual reservoir and the oil recovery has an equivalent increase of 2.205%. The results demonstrate the proposed method’s strong engineering potential and application value, as it combines the benefits of human experience and evolutionary algorithms to determine the optimal infill well placement in a realistic extra-low permeability reservoir development scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康复小白完成签到 ,获得积分10
刚刚
老高完成签到,获得积分10
1秒前
xmqaq完成签到,获得积分10
1秒前
青水完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
震动的鹏飞完成签到 ,获得积分10
4秒前
朴实觅夏完成签到 ,获得积分10
6秒前
激动的xx完成签到 ,获得积分10
7秒前
sun完成签到 ,获得积分10
11秒前
应夏山完成签到 ,获得积分10
12秒前
15秒前
orixero应助Robbin采纳,获得10
16秒前
16秒前
charleslam完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
小明完成签到 ,获得积分10
21秒前
onevip完成签到,获得积分0
25秒前
25秒前
mm完成签到 ,获得积分10
28秒前
29秒前
mike2012完成签到 ,获得积分10
30秒前
邵小庆发布了新的文献求助10
33秒前
33秒前
mzrrong完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
大气的尔蓝完成签到,获得积分10
38秒前
KKLD完成签到,获得积分10
38秒前
NexusExplorer应助明理问柳采纳,获得10
39秒前
俏皮元珊完成签到 ,获得积分10
40秒前
牛马完成签到 ,获得积分10
43秒前
43秒前
邢夏之完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
46秒前
龚文亮发布了新的文献求助10
49秒前
还行吧完成签到 ,获得积分10
49秒前
Zilch完成签到 ,获得积分10
50秒前
邵小庆完成签到,获得积分10
50秒前
氕氘氚完成签到 ,获得积分10
50秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613143
求助须知:如何正确求助?哪些是违规求助? 4018085
关于积分的说明 12437049
捐赠科研通 3700437
什么是DOI,文献DOI怎么找? 2040760
邀请新用户注册赠送积分活动 1073539
科研通“疑难数据库(出版商)”最低求助积分说明 957193