An Efficient Infill Well Placement Optimization Approach for Extra-Low Permeability Reservoir

填充 储层模拟 数学优化 磁导率 计算机科学 石油工程 工程类 土木工程 数学 遗传学 生物
作者
Qinyang Dai,Liming Zhang,Kai Zhang,Guodong Chen,Xiaopeng Ma,Jian Wang,Huaqing Zhang,Yan Xia,Piyang Liu,Yongfei Yang
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:11
标识
DOI:10.1115/1.4055198
摘要

Abstract The objective of infill well placement optimization is to determine the optimal well locations that maximize the net present value (NPV). The most common method of well infilling in oil field is based on the engineer’s knowledge, which is risky. Additionally, numerous optimization techniques have been proposed to address the issues. However, locating the global optimum in a large-scale practical reservoir model is computationally expensive, even more so in the realistic extra-low permeability reservoir, where fractures are generated and underground conditions are complex. Thus, both determining well locations solely through human experience and obtaining them through traditional optimization methods have disadvantages in actual engineering applications. In this paper, we propose an infill well optimization strategy based on the divide-and-conquer principle that divides the large-scale realistic reservoir model into several types of small-scale conceptual models using human knowledge and then uses the surrogate-assisted evolutionary algorithm to obtain the infill well laws for this reservoir. The diamond inversed nine-spot well patterns are studied and summarized to provide the optimal infill well placement laws for extra-low permeability reservoirs. Additionally, the laws are implemented in W-77 actual reservoir and the oil recovery has an equivalent increase of 2.205%. The results demonstrate the proposed method’s strong engineering potential and application value, as it combines the benefits of human experience and evolutionary algorithms to determine the optimal infill well placement in a realistic extra-low permeability reservoir development scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北枳完成签到 ,获得积分10
刚刚
1秒前
zzzzzzzzzzzzzzzz完成签到,获得积分10
1秒前
糊涂的皮卡丘完成签到 ,获得积分10
2秒前
987完成签到 ,获得积分10
4秒前
坐亭下发布了新的文献求助10
4秒前
5秒前
5秒前
bkagyin应助oceanic采纳,获得10
5秒前
GPCR发布了新的文献求助10
6秒前
愉快千万发布了新的文献求助10
6秒前
光电效应完成签到,获得积分10
6秒前
沉默幻天发布了新的文献求助10
8秒前
白昼の月完成签到 ,获得积分0
8秒前
罗杨发布了新的文献求助10
9秒前
9秒前
11秒前
Murray应助神勇的香魔采纳,获得10
12秒前
beituo发布了新的文献求助10
12秒前
浮生发布了新的文献求助10
13秒前
ChanQiaQia完成签到,获得积分10
14秒前
贺儿完成签到 ,获得积分10
14秒前
法外潮湿宝贝完成签到 ,获得积分10
14秒前
14秒前
14秒前
爆米花应助Mr.Ren采纳,获得10
16秒前
Singularity应助罗杨采纳,获得10
16秒前
汪少侠发布了新的文献求助10
16秒前
18秒前
rosalieshi应助敉_采纳,获得30
18秒前
春一又木发布了新的文献求助10
18秒前
八硝基立方烷完成签到,获得积分0
19秒前
sw完成签到,获得积分20
19秒前
19秒前
20秒前
20秒前
沉默幻天完成签到,获得积分10
20秒前
MasterZ完成签到,获得积分10
20秒前
21秒前
z1y1p1完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083