Shale oil production prediction and fracturing optimization based on machine learning

石油工程 油页岩 粒子群优化 支持向量机 人工神经网络 致密气 超参数 致密油 水力压裂 油田 储层模拟 工程类 计算机科学 人工智能 机器学习 废物管理
作者
Chunhua Lu,Hanqiao Jiang,Yang Jinlong,Zhiqiang Wang,Miao Zhang,Junjian Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:217: 110900-110900 被引量:31
标识
DOI:10.1016/j.petrol.2022.110900
摘要

With the advancement of horizontal well and hydraulic fracturing technology, the development of unconventional reservoirs such as shale oil has become a hot issue in the energy field. However, production tests have demonstrated that production is non-uniformly between stages due to reservoir heterogeneity and fracturing design limitations. Therefore, it makes sense to improve fracturing design to enhance shale oil development. In this paper, we propose a computational framework for shale oil production prediction and fracturing parameters optimization that couples machine learning and particle swarm optimization (PSO). Firstly, we construct a deep neural network (DNN) model database with 841 numerical simulation data as training set and validation set, and 87 field data as test set. Secondly, the hyperparameter optimized DNN are performed to predict the production performance. And the predictive performance compares to the random forest (RF) and support vector machine (SVM). Thirdly, coupled with DNN, PSO is performed to optimize fracturing parameters. Finally, conducting rapid fracturing design based on PSO optimization results and reservoir sweet spot distribution. The results reveal that DNN exhibit best production prediction accuracy compared to RF and SVM. The generalization ability of DNN is verified by accurate prediction performance of 4 cases with extreme parameters. Optimized fracturing parameters using PSO in an actual well resulted in 2969 m3 increases in cumulative oil and 68*104 USD increases in NPV. According to the optimization results of PSO in four extreme cases, the reasonable fracturing parameters for different reservoir quality are obtained, including the number of fracturing stages and clusters, the volume of single stage fracturing fluid and proppant. Our work guides engineers in rapid fracturing design while improving shale oil development effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lan完成签到,获得积分10
1秒前
阮楷瑞发布了新的文献求助10
1秒前
wendy发布了新的文献求助10
1秒前
2秒前
NexusExplorer应助爱听歌衬衫采纳,获得10
2秒前
三石发布了新的文献求助10
2秒前
无花果应助Puokn采纳,获得10
2秒前
paper完成签到 ,获得积分10
3秒前
英俊的铭应助3s采纳,获得10
4秒前
lan发布了新的文献求助10
4秒前
情怀应助瘦瘦一德采纳,获得10
5秒前
6秒前
loren完成签到,获得积分10
7秒前
7秒前
7秒前
merlinye完成签到,获得积分10
8秒前
星河鱼完成签到,获得积分10
9秒前
9秒前
波波完成签到,获得积分10
10秒前
hyh发布了新的文献求助10
11秒前
传奇3应助yzm788695采纳,获得10
11秒前
天天快乐应助阮楷瑞采纳,获得10
12秒前
做事不太冷静完成签到,获得积分20
12秒前
科研通AI2S应助Strike采纳,获得30
12秒前
伊伊发布了新的文献求助10
12秒前
juanjuan应助简单大叔采纳,获得10
14秒前
14秒前
JLLi发布了新的文献求助10
14秒前
15秒前
16秒前
yufanhui应助loren采纳,获得10
18秒前
慕青应助三岁采纳,获得10
18秒前
18秒前
3s发布了新的文献求助10
19秒前
tt666发布了新的文献求助10
19秒前
19秒前
20秒前
脑洞疼应助苹果路人采纳,获得10
21秒前
21秒前
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919